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Abstract: We δ -approximate strictly short (e.g. constant) maps between Riemannian
manifolds f0 : Xm → Y N for N ≫ m2/2 by C∞-smooth isometric immersions fδ : Xm → Y N

with curvatures curv( fδ )<
√

3
δ

, for δ → 0.

Key words and phrases: global geometric and topological methods

1 Compression and Approximation

A C∞-immersion of a smooth manifold X to a smooth Riemannian Y = (Y,h),

f0 : X → Y

is called IIh or just II, if the Riemannian metric inducing operator from the space of smooth maps
f : X → Y to the space G+(X) of smooth semi definite positive quadratic forms on X ,

I = Ih : F =C∞(X ,Y )→ G+(X) for f I7→ g = f ∗(h)

is infinitesimally invertible in a C∞-neighbourhood F0 ⊂ F of f0.
This means that the differential/linearization of I ,

L f : Tf (F)→ TI ( f )(G),

of I , f ∈ F0, is right invertible by a differential operator

M f : TI ( f )(G)→ T f (F), L f ◦M f = Id : TI ( f )(G)→ TI ( f )(G),
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MISHA GROMOV

where f 7→ M f is a (possibly non-linear) differential operator defined on F0.
If Y =RN , (and in local coordinates for all Y , in general) the operator L can be written as an operator

on maps
−→
f : X → Y ,

L f (
−→
f ) = I ( f + ε

−→
f )−I ( f )+o(ε), ε → 0,

and where M f (
−→g ) is a differential operator in ( f ,−→g ), which is linear in −→g and which satisfies

L f (M f (
−→g )) =−→g .

“Free” Example. Free immersions f , i.e. where the second osculating spaces osc2( f (x)) ∈ Tf (x)(Y )
have maximal possible dimensions,

dim(osc2( f (x)) =
dim(X)(dim(X)+1)

2
+dim(X)

at all points x ∈ X , are II by the Janet-Burstin-Nash Lemma.
Consequently,

generic f are II for dim(Y )≥ dim(X)(dim(X)+1)
2 +2dim(X).1

1.A. Definitions of m-Free and of Flat II[m] Maps. A smooth immersion f : X = Xn → Y is m-free,
m ≤ n = dim(X), if the restrictions of f to all m-dimensional submanifolds in X are free.

For instance,

i f N = dim(Y )≥ m(m+1)
2

+m(n−m)+2n,

then generic f are m-free.

An immersion f : X = Xn → Y is flat II[m], m ≤ n, if the induced metric in X is Riemannian flat,
i.e. locally isometric to Rn, and if the restrictions of f to all flat, (i.e. locally isometric to Rm ⊂ Rn)
m-dimensional submanifolds Xm ⊂ Y are II.

For instance, isometric m-free immersions of flat tori are flat II[m].
Such immersions, especially of the split tori Tn =T1 × ...×T1︸ ︷︷ ︸

n

to the Euclidean spaces, play a special

role in our arguments,2 where we use below the following.
1.B. Example. Let Tn be the torus with a flat Riemannian metric, i.e. the universal covering of this

Tn is isometric to Rn. Then:
Tn admits a free isometric C∞-immersion to R

n(n+1)
2 +n+2

and
an isometric II-immersion to R

n(n+1)
2 +n+1.

1.C. Remarks on the Proof. (a) The existence of free isometric immersions of flat split n-tori to
N-dimensional Riemannian manifolds is proven for N ≥ n(n+1)

2 +n+2 in section 3.1.8 in [4] and since
non-split flat tori can be approximated by finite coverings of split ones, the general case follows from the
Nash implicit function theorem.

1See [4], [5] and references therein.
2This is similar to how it is with non-isometric immersions with controlled curvature in [6].
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ISOMETRIC IMMERSIONS WITH CONTROLLED CURVATURES

(b) The existence of II-immersion of split tori to R
n(n+1)

2 +n+1 is (implicitly) indicated in an exercise
on p. 251 in [4]3, while the recent result by DeLeo [1] points toward a similar possibility for

dim(Y )≥ n(n+1)
2

+n−
√

n
2
+

1
2
.

In fact, it is not impossible that such immersions exist for

dim(Y )≥ n(n+1)
2

+1,

and it seems not hard to show these don’t exist for dim(Y )≤ n(n+1)
2 .

Definition of curv(f) = curv(f(X)). This is (as in [6]) the curvature of a manifold X immersed
by f to a Riemannian Y , that is the supremum of the “Y -curvatures” , i.e. curvatures measured in the
Riemannian geometry of Y ⊃ X , of geodesics γ ⊂ X , for the induced Riemannian metric in X ,

curv( f ) = curv( f (X)) = sup
γ∈X

curvY (γ).

1.D.
√

3-Remark. One has only a limited control over the curvatures of the above immersions
Tn → Y , even for Y = RN , but we shall prove in the next section the existence of

a free isometric immersion from the n-torus to the unit N-ball for N ≥ n(n+1)
2 +2n with the curvature

bounded by a constant D independent of n, where, conceivably, D <
√

3.
In fact,

√
3 is asymptotically optimal, since, according to Petrunin’s inequality,4

smooth isometric immersions f : Tn → BN(1) satisfy for all n and N:

curv( f )≥
√

3
n

n+2
.

1.E. Compression Lemma. Let

F : Tn ↪→ BN(1)⊂ RN

be a flat II[m]-immersion.
Let Xm = (Xm,g) be a compact Riemannian m-manifold, possibly with a boundary, which admits a

smooth (1+ ε)-bi-Lipschitz immersion φε : Xm → Tn. If ε ≤ ε0(m)> 0. 5

Then there exist C∞-smooth isometric immersions

f ◦i : X ↪→ BN
(

1
i

)
, i = 1,2, ...,

3We explain this in section 3. Also notice that there are no known obstructions to the existence of free isometric immersions
of flat n-tori to R

n(n+1)
2 +n, but no example of a free (isometric or not) immersion from Tn to R

n(n+1)
2 +n for n ≥ 2 had been found

either.
4See https://anton-petrunin.github.io/twist/twisting.pdf and [8].
5Possibly, this ε0 doesn’t depend on m.
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such that
curv f ◦i (X)≤ i · curv(F(Tn))+O(1).

Proof. Compose the maps F and φε with the homothetic endomorphism t 7→ i · t of the torus,

X
φε→ Tn i·→ Tn F→ BN(1)

and observe that the resulting composed maps, say

fi,ε : X → BN(1)

satisfy the following conditions.
•ε The map fi,ε is a smooth (1+ ε)-bi-Lipschitz immersion with respect to the metrics i2g.
•1/i The covariant derivatives of the metric i2g and the covariant derivatives of the induced metric

f ∗(hEucl) with respect to i2g converge to zero for i → ∞,

max(||∇ j
ig(i

2g)||, ||∇ j
ig( f ∗i,ε(hEucl))||)≤ const ji− j.

•II The immersions fi,ε are uniformly IIhEucl :

the j2g-covariant derivatives of the (the coefficients of the) differential operators M =Mi =M fi,ε ,
which invert the linearized operator I : fi,ε →7→ f ∗i,ε(hEucl) on X are bounded, for all i independently
of i,

||∇ j
gi,ε

(M )|| ≤ const = constm, j.

It follows from the (generalized) Nash implicit function theorem (section 2.7.2 in [4]) that, for a
sufficiently small ε > 0, depending only on m, the maps fi,ε for sufficiently large i admit C∞-small,
convergent to 0 with ε → 0, perturbations to smooth isometric immersions f#i : (X , i2g)→ BN(1).

Since the curvatures of these immersions are bounded by the curvature of F plus O(1/i), the
immersions

f ◦i = i−1 f#i : (X , i2g)→ BN(1/i)

are the required ones. QED.
1.F. Local Compression Corollary. Let Xm be a smooth Riemannian manifold with the sectional

curvature bounded by
|sect.curv(Xm)| ≤ 1

and where the injectivity radius at a given point is bounded from below

in j.radx0(X
m)≥ 1.

Then there exists a constant ρ = ρm > 0,6 such that the ball B(ρ) = Bx0(ρ) ⊂ X admits a smooth
isometric immersion to the Euclidean space

f : B(ρ)→ R
m(m+1)

2 +m+1.

6Probably, what we say here holds for ρ ≥ 10−10 and all m.
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Moreover there exist immersions fδ : B(ρ)→ R
m(m+1)

2 +m+1 for all 0 < δ ≤ 1 with the diameters of the
images bounded by

diam( fδ (B(ρ)))≤ δ

and the curvatures of these images bounded by

curv( fδ (Bx0(ρ)))≤
Cm

δ
.7

Proof. The assumptions on the curvature and the injectivity radius of X imply that the Bx0(ρ) is
(1+3ρ)-biLipschitz to the ρ-ball in the flat torus.

Remark. We shall prove in the next section the existence of smooth isometric fδ : Bx0(ρ) →
R

m(m+1)
2 +2m+1 with diam( f δx0)≤ δ and the curvatures of these images bounded by

curv( fδ (Bx0(ρ)))≤
C
δ

for a universal constant C. 8

1.G. Approximation Lemma. Let

Xm = (Xm,gε)
φε→ Tn F→ RN

be as in 1.E, let Y = (Y,h) be a smooth Riemannian manifold and let f0 : Xm → Y be a C∞-smooth
map.

Let the pullback to X of tangent bundle of Y ,

f ∗0 (T (Y ))→ X ,

admit N independent vector fields normal to the image of the differential of f0.
For instance, dim(Y )≥ N and f0 is a constant map, or f0 is an immersion homotopic to a constant

map and dim(Y )≥ N +2m−1.
If 0 < ε ≤ ε0(m), then, for all i = 1,2, ..., there exist a δi-approximation of f0 for δi ≤ 1

i by
C∞-immersions fi : Xm → Y with

curv fi(X)≤ i · curv(F(Tn))+o(i)

and where fi increase the induced Riemannian metric g0 = f ∗0 (h) in X by the above gε :

f ∗i (h) = g0 +gε .
9.

Proof. Let E = EN,δ0 : X ×BN(δ )→ Y be the exponential map defined by the N vector fields, where
this map is defined for all δ0 if Y is complete Y and if Y is non-compete, then EN,δ0 is defined if the
δ0-neighbourhood of f0(X)⊂ Y is compact.10

7The proof of 1.B in [4] for Y = R
m(m+1)

2 +m+2 shows that Cm < (100m)100m.
8Probably C < 100.
9δi-Approximation signifies that distY ( f0(x), fi(x))≤ δi, x ∈ X .

10We assume here that Y has no boundary.
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Let δi ≤ δ0 and let us restrict the map E to the graph of the above map f ◦i : X → BN(δi)⊂ RN ,

Γi = Γ f ◦i : X ↪→ X ×BN(δi),

where our f ◦i is now isometric for the metric gε on X .
Since the N fields are normal to f0(X)⊂ Y , the Riemannian metric in X induced by Γi ◦E : X → Y is

(1+ε+const ·δi)-bi-Lipschitz to g0+gε ; hence, the (generalized) Nash implicit function theorem applied
as in the proof of 1.E, now to the maps Γi ◦E for small ε > 0 and large i, delivers C∞-perturbations to these
maps to the required immersions fi : X → Y with f ∗i (h) = g0 +gε and with curv fi(X)≤ i · curv f (Tn)+
o(i) .

1.H. Global Approximation Corollary. Let Xm = (Xm,g) and Y N = (Y N ,h) be smooth Riemannian
manifolds and f0 : X → Y = (Y,h) be a smooth strictly short map, i.e. the quadratic differential form
g− f ∗(h) is positive definite.

If Xm is compact, if X admits a smooth immersion to Rn and if

N ≥ n(n+1)
2

+n+1,

then there exists δi-approximation of f0 for δi ≤ 1
i , i = 1,2, ..., by isometric C∞-immersions fi : Xm →Y

with
curv( fi(X))≤ i ·Cm +o(i) .

Proof. Apply the lemma to smooth (1+ε)-bi-Lipschitz immersions φε : Xm →Tn =Rn/Zn, delivered
by the Nash-Kuiper C1-immersion theorem and to an isometric II-immersion F : Tn → RN= n(n+1)

2 +n+1

from 1.B.
Remarks. (a) Since all Xm, m ≥ 2, admit smooth immersions to R2m−1 by the Whitney theorem, the

inequality

N ≥ 2m(2m−1)
2

+2m ≈ 2m2

suffices for all Xm. This is the worst case dimension-wise.
Our bound on N is much better for n = m+1, e.g. for compact hypersurfaces Xm ⊂ Rm+1, where

one needs

N ≥ (m+1)(m+2)
2

+m+2 =
m(m+1)

2
+2m+3;

but this still seems far from optimal.
The best we can get for smaller N, namely for

N ≥ m(m+1)
2

+m+1,

is the following special result.
1.I. Flat Torus Approximation Theorem. Let Tm

g the torus with an invariant (hence flat)
Riemannian metric g and let

f0 : Tm
g → Y
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be a smooth map, where Y = (Y,h) is a compact N-dimensional C∞-smooth Riemannian manifold,
possibly with a boundary, such that

dist( f0(Tm
g ),∂Y )> 0.

If N = dim(Y )≥ m(m+1)
2 +m+1, and if the bundle induced by f0 from the tangent bundle of Y ,

that is f ∗0 : T (Y )→ Tm
g is trivial (e.g. f0 is contractible or Y is stably parallelizable), then, for all

δ > 0,11 the map f0 admits a δ -approximation by metrically homothetic maps

fδ : Tm
g → Y,

i.e. such that
f ∗(h) = λ ·g for some λ > 0

and where

curv( fδ (Tm))≤ constm
δ

+o
(

1
δ

)
,

Proof. Let E = EN,δ0 : X ×BN(δ )→ Y be the exponential map, similar to that in the proof of 1.F but
now not required to be normal to f0(X).

Let F : Tm → BN(1), N = m(m+1)
2 +m+1 be as in 1.B and let

Fi j : Tm → BN(1/i) for t 7→ 1
i
F( jt).

Let δi ≤ δ0 and let us restrict the map E to the graph of the map Fi j

ΓFi j = Γi, j : X ↪→ X ×BN(δi).

Let the ratio λ = j/i be very large. Then, in terms of the metric λg, the metric induced by E ◦Γi j :
Tm → Y becomes C∞-close to λg and the proof follows as in 1.E and 1.G by the (generalized) Nash
implicit. function theorem.

Remarks. The proof of Theorem (C) on p. 294 in [4] delivers (a stronger version of) the “local
compression” for surfaces, X2 → B4(δ ), and this, seems to imply the torus approximation theorem for
T2 → Y N and all N ≥ 4.

We don’t know if one could comparably improve bounds on N in general, but in the next section
we prove an approximation theorem for all X with the constant C independent of m and with a slightly
improved dimension bounds in some cases.

2 Free Isometric Imbeddings of Tori to the Unit Balls with Small Curva-
tures

Let
TN
Cl ⊂ S2N−1 ⊂ B2N ⊂ R2N

11Since we are concerned with δ → 0, we assume here and below that δ ≤ 1.
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be the Clifford torus, which observe, has the Euclidean curvature

curv(TN
Cl ⊂ R2N) =

√
N.

2.A. ∆(n,N)-inequality. If 1 ≤ n2

2 ≤ N, then there exists a (flat invariant) subtorus Tn
0 ⊂ TN

Cl, the
Euclidean curvature of which satisfies

curv(Tn
0 ⊂ R2N)≤

√
3
√

n
n+2

+∆(n,N), 12

where ∆(n,N) is bounded by a universal constant, which, in fact, vanishes for N ≥ 8(n2 +n).13

This follows from the D(m,N)-inequalities 2.1.E and 3.B in [6].
2.B. m-Freedom Corollary. If m ≤ n and

m(m+1)
2

+m(n−m)+2n ≤ 2N,

then, for all ε > 0, the n-torus Tn admits an immersion Tn Fε

↪→ B2N ⊂ R2N such that
• f lat the induced Riemannian metric F∗

ε (hEucl) in Tn is Riemannian flat;
•curv the Euclidean curvature of this torus is bounded by

curv(Fε(Tn))≤
√

3n
n+2

+∆(n,N)+ ε;

• f ree The restrictions of Fε to all m-dimensional submanifolds in Tn are free.
Proof. The required Fε is obtained by generically ε-perturbing the lift of the above T n

0 ⊂ TN
Cl to a

finite covering of TN
Cl as follows.

Firstly, replace Tn
0 by a generic (flat invariant) subtorus, Tn

ε ⊂ TN
Cl tangentially ε-close to Tn

0, i.e.
where the tangent spaces to Tn

ε are ε-parallel in TN
Cl to these of T n

0 ,14 where such an Tn
ε can be chosen

split, i.e. being Riemannian product of 1-tori.
Moreover, we let

T̃N
Cl = T1

1 × ...×T1
i × ...×T1

N︸ ︷︷ ︸
N

,

(the circles T1
i may have different lengths li), be a split finite covering of the Clifford torus such that

T̃n = T1
1 × ...×T1

n︸ ︷︷ ︸
N

equals a covering of Tn
ε .

12The summand
√

3
√

n
n+2 is optimal by Petrunin’s inequality.

13Probably, ∆(n,N)< 10 for all N ≥ n(n−1)/2 and, possibly ∆(n,N)≤ 1/n for N ≥ n(n+2)
2 .

14This Tn
ε is far from T n

0 as a subset in TN
Cl.
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Secondly, perturb the embedding T̃n ⊂ T̃N
Cl keeping the induced metric Riemannian flat in N−n steps,

where, at each step, we perturb a split K-torus, which contains T̃n, in a (K +1)-torus,

T̃n ⊂ TK−1 ×T1
i ⊂ TK−1 × (T1

i ×T1
i+1) = TK+1 ⊂ T̃N

Cl, K = n, ...,N −1, i = n+1, ...N,

by approximating the embedding T1
i ⊂ T1

i ×T1
i+1 by a generic isometric embedding (1+ ε) ·T1

i
Iε→

Ti ×T1
i+1.

Here (1+ε) ·T1
i is the same circle as Ti but with the metric of total length equal to (1+ε) · length(Ti)

and where, finally, we let

TK−1 ×T1
i ∋ (θ , t)→ (θ , Iε(t)) ∈ TK−1 ×T1

i ×T1
i+1.

If m(m+1)
2 +m(n−m)+2n≤ 2N, and granted all was done “sufficiently generically”, then the resulting

map T̃n → B2N(1) via T̃N
Cl ⊂ B2N(1) is free on all Xm ⊂ T̃n..

Checking this, which is similar to “Making Non-free Maps Free” on p. 259 in [4], is left to the reader.
2.C. Corollary. Let Xm and Y M be smooth Riemannian manifold and f0 : X → Y be a smooth strictly

short map. If Xm is a compact manifold, which admits a smooth immersion to Rn, and if

M >
m(m+1)

2
+m(n−m)+2n,

then f0 can be δi-approximated, by isometric C∞-immersions fi : Xm → Y M , for δi ≤ 1
i , i = 1,2, ..., such

that

curv( fi(X))≤ i

(√
3n

n+2
+∆(n,⌊M/2⌋)

)
+o(i).

For instance,
if X is a Euclidean hypersurface, then such an approximation is possible for

M >
m(m+1)

2
+3m+2

with

curv( fi(X))≤ i

(√
3(m+1)

m+3
+∆(m+1,⌊M/2⌋)

)
+o(i) .

And – this is the worst case – the inequality

M >
m(m+1)

2
+m(m−1)+4m−2

is sufficient for all compact Xm, where the maps fi satisfy:

curv( fi(X))≤ i

(√
3(2m−1)

2m+1
+∆(2m−1,⌊M/2⌋)

)
+o(i) .
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15

2.D. Immersions with Prescribed Curvatures. The symmetric normal curvature Ψ f of an immersion
f : X → Y is the “square” of the second fundamental form, that is the symmetric differential 4-form, such
that

Ψ f (∂ ,∂ ,∂ ,∂ ) = ||∇∂ ,∂ f ||2Y
for all tangent vectors ∂ ∈ T (X).

Observe that if f is free, then Ψ f is positive definite. This means that
the 4-form Ψx on the tangent space T = Tx(X)(= Rm) is contained, for all x ∈ X , in the interior

of the convex hull of the GL(m)-orbit of the fourth power of a non-zero 1-form on T .16

Also observe that
sup

||∂ ||=1
Ψ f (∂ ,∂ ,∂ ,∂ ) = (curv( f ))2.

2.C. C2-Curvature Theorem.17 Let X = Xm and Y = Y M be smooth Riemannian manifolds, let
f : X → Y a free isometric C∞-immersion and let Ψ be a symmetric positive definite differential 4-form
on X.

If

M = dim(Y )≥ m(m+1)
2

+3m+5,

then f can be arbitrarily finely C1-approximated by isometric C2-immersions f ′ with the increase of their
normal curvatures by Ψ.18

||∇∂∂ f ′||2 = ||∇∂∂ f ||2 +Ψ(∂ ,∂ ,∂ ,∂ )

for all tangent vectors ∂ ∈ T (X).
2.E. Euclidean Example. The standard embedding f0 : Rn → R(n+2)(n+5)/2 can be C1-approximated

by isometric C2-embeddings f with an arbitrary strictly positive definite normal curvature form Ψ.
Proof. C∞-approximate f0 by free isometric embeddings (as in 1.B) and apply 2.C.
2.F. Toric Example. Let Ψ be a smooth symmetric positive definite differential 4-form on the m torus

Tm.
If M ≥ 16(m2 +m), then there exist a C2-immersion f : TM → Bm(1), such that the induced metric is

flat (split if you wish) and

Ψ f (∂ ,∂ ,∂ ,∂ ) = Ψ(∂ ,∂ ,∂ ,∂ )+
3m

m+2
||∂ ||4.

Proof. Observe that, according to 3.1 from [6] (this also follows from Petrunin’s inequality), the
isomeric immersion f0 : Tm → BM with (curv( f0))

2 ≤ 3m
m+2 has constant curvature,

Ψ f0(∂ ,∂ ,∂ ,∂ ) =
3m

m+2
||∂ ||4,

15If the right-hand sides of the inequalities M > ... are even, then these may be replaced by M ≥ .... .
16This interior makes the unique open GL(m)-invariant (non-empty!) minimal convex cone in the space TⓈ4 (of dimension

m(m+1)(m+2)(m+3)/24, m = dim(T ) of symmetric 4-linear forms (4d-polynomials) on T .
(This cone is strictly smaller than the cone of the forms Φ, which are positive as polynomials, Φ(t, t, t, t)> 0, t ̸= 0.)
17See 3.1.5.(A) in [4].
18In general, such an f ′ can’t be C∞ for large m , but possibly, these C2-smooth f ′ exist for all m ≥ 2 and all M.
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and apply 2.B and 2.D.

3 Perspective and Problems

The II-property of free immersions was already implicitly present in the proof of the algebraic Janet
lemma (1926), where this lemma brings the isometric immersion equations to the Cauchy–Kovalevskaya
form and thus implies that real analytic Riemannian n-manifolds locally Can-immerse to R

n(n+1)
2 .19 20

The simplest non-free II-immersions, X →Y are those, which are free on a totally geodesic hypersur-
face X0 ⊂ X and also on the complement X \X0 and where the Hessian of the second derivatives ∂i j f
vanishes on X0 with finite order (see 2.3.8, 3.1.8. 3.1.9 in [4]). Then one defines by induction k-subfree
maps of n-manifolds X to Y , where

0-subfree =free,
and where

1-subfree maps f
generalize the above ones, namely, where there exist tangent hyperplanes T n−1

x ⊂ Tx(X) at all x ∈ X , such
the restrictions of f to the exponential images Xx = exp(Tx)⊂ X are free at x and also on the complements
Xx near x, i.e. in the small balls:

Bx(ε)∩ (X \Xx)

with “finite order of non-freedom” on (infinitesimal) neighbourhoods of Xx.
Finally, a map f is

k-subfree, k = 0,1, ...,n,
if it is free on the above hypersurfaces Xx ⊂ X near x for all x ∈ X and it is (k−1)-subfree on Bx(ε)∩
(X \Xx) with “finite order of non-(k−1)-subfreedom” on (infinitesimal) neighbourhood of Xx.

Clarification. “Finite order of non-subfreedom” means that the coefficients of the relevant linear
differential operator M = M f (g) on X \Xx are rational functions in partial derivatives of f , where these
functions have their poles on Xx, (see 238 in [4] and [1]).

This seems to imply –I didn’t truly check this – that
generic immersions Xn → Y N for N ≥ n(n+1)

2 +n are II.
It is also plausible, that
generic bendings of m-subtori in the Clifford torus, as in the proof of 2,B would make them II for

m(m+1)
2 +m(n−m)+2n−m ≤ 2N.

But this, even if true only slightly improve the lower bound on N in the above “worst dimension
case”, where, in fact, we expect the following.

19The Cauchy–Kovalevskaya theorem also yields a weak form of the Nash real analytic implicit function theorem. This, by
Janet’s lemma combined with an analytic version of Nash twisting argument, delivers isometric Can-immersions of compact
Can-manifolds to Euclidean spaces, see [2] and p 54 in Appendix 11 in [7].

20The existence of local isometric C∞-immersions of C∞-manifolds Xn → RN is known for N =
n(n+1)

2 +n−1 [3] and it is

easy to see that there is no local C∞-immersions of generic smooth Riemannian n-manifolds to R
n(n+1)

2 −1.
But for no n ≥ 2 one can prove the existence of such immersions to RN= n(n+1)

2 +n−2 or to find a counterexample for N =
n(n+1)

2 .
It is also unclear for which i = 2,3, ...., (if any) all C∞-smooth Riemannian manifolds X = Xn, admit (local or global)

isometric Ci-immersion to R
n(n+1)

2 −1, where, for all we know, this may be possible, say for i ≤ 0.1 4
√

n, see [5] for more about it.
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3.A. Conjecture. Let Xm and Y N be smooth Riemannian manifolds, where X compact and Y is
complete, and let f0 : X → Y be a smooth strictly short map. If

N ≥ m(m+1)
2

+1,

then f0 admits a δ -approximation for all δ > 0 by isometric C∞-immersions fδ : Xm → Y with

curv( f (δ (X)))≤ 1
δ

(√
3m

m+2
+∆(m,N)

)
+o
(

1
δ

)
,

for the same ∆ as in 2.A, where, if

N ≥ m(m+1)
2

+m,

these fδ can be chosen m-subfree.
FAMILIES OF MAPS.

Given a locally defined class C of C∞-maps f : X → Y , where Y = (Y,h) is a smooth Riemannian
manifold, e.g. C consists of smooth immersions, of II-isometric immersions etc, the δ -approximation
problem is accompanied by a similar problem for families of maps.

More generally, such approximation makes sense for maps f from foliated leaf-wise Riemannian
manifolds X= (X,g) 21 to Y , where the restrictions of f to the leaves X ⊂ X are in C .

3.B. C -Homotopy Approximation Conjecture. Let X= (X,g) be a compact manifold foliated
into m-dimensional Riemannian leaves, let Y = (Y,h) be complete Riemannian N-manifold.

Let C be a class of smooth leaf-wise isometric II-maps and φ0 : X→ Y be a C -map.
Let f0 : X→ Y be a smooth leaf-wise strictly short C -map, which is homotopic to φ .
Then, at least in in the following three cases, the map f0 can be δ -approximated for all δ > 0 by

smooth leaf-wise C -maps
fδ : X→ Y,

where the maps fδ can be joined with φ0 by homotopies of leaf-wise C -maps and where the leaf-wise
curvatures of fδ are bounded by

curv( f (δ (X)))≤ Ξ

δ
+o
(

1
δ

)
,

where Ξ = Ξ(m,N,dim(X))≤ 100.
Case 1. C is the class of leaf-wise free isometric maps.
Case 2. C is the class of leaf-wise m-subfree isometric maps.
Case 3. C is the class of all leaf-wise isometric II-maps.
Remarks/Questions. (i) How big is Ξ? Possibly, Ξ is significantly smaller than 100, but it is unlikely

to approach
√

3 for N ≫ m2.
Yet, it follows by the arguments in section 2 that

21This g – a smooth leaf-wise Riemannian metric on X – is a positive definite differential quadratic form on the tangent
bundle T ⊂ T (X) to the leaves X ⊂ X.
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if N ≫ dim(X)2, then

Ξ ≤

√
3(2dim(X)−1)

2dim(X)+1
<
√

3.

Conceivably, the correct bound on curvature needs Ξ ∼ 3(dim(X))−m+1).
(ii) Why Integrable? The above make sense for possibly non-integrable subbundles T ⊂ T (X), where

the counterpart of the metric inducing operator sends maps f to the restrictions of the forms f ∗(h) to the
subbundle T ⊂ X, where one can define the corresponding classes CT of maps f : X→ Y and where the
T-curvature of f is defined as follows.

Given a non-zero tangent vector τ ∈ Tx(X), x ∈ X, let curvτ( f ) be the infimum of Y -curvatures at x
of the f -images of the curves C ⊂ X which contain x and are tangent to τ ,

curvτ( f ) = inf
C

curvx f (C)

and
curvT( f ) = sup

τ∈T
curvτ( f ).

Here is what one (may be unrealistically) expects in this regard.
3.C. Orthonormal Frame Conjecture. Let X be a compact smooth Riemannian manifold and Θi,

i = 1., , ,m ≤ dim(X), be smooth orthonormal vector fields on X.
Let Y = (Y,h) be a complete Riemannian N-manifold and f0 : X→ Y, be a smooth strictly short map.
If

N ≥ m(m+1)
2

+1

and the induced (pullback) vector bundle f ∗(T (Y ))→ X admits m linearly independent sections, e.g. f0
is contractible, then the map f0 can be δ -approximated for all δ > 0 by smooth maps

fδ : X→ Y,

such the differential images d f (Θi) ∈ T (Y ) are orthonormal with respect to h,

⟨d f (Θi),d f (Θ j)⟩h = 0, ||d f (Θi)||h = 1,

and such that

curvT( f )≤ Ξ

δ
+o
(

1
δ

)
,

for Ξ ≤ 100, where T ⊂ T (X) is the subbundle spanned by the fields Θi.
Below we state without proof the only confirmation we have of the conjectures 3.A and 3.B.
3.D. Parametric 1D-Approximation Theorem. Let X be compact smooth Riemannian manifold

and T1 be a smooth line field on X. Let Y = (Y,h) be a complete Riemannian manifold of dimension
N ≥ 2 and let f0 : X→ Y be a strictly short map.

If T1, regarded as a line bundle over X, admits an injective homomorphism to the induced (pullback)
bundle f ∗(T (Y ))→ X, e.g. T1 is orientable (defined by a vector field) and the map f0 is contractible,
then the map f0 can be δ -approximated for all δ > 0 by smooth maps

fδ : X→ Y,
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which are isometric on T1 and such that the T1-curvatures of fδ , i.e. the Y -curvatures of the fδ -images
of the (1-dimensional) orbits/leaves of T1, are bounded by

curvT1( fδ )≤
Ξ1

δ
+o
(

1
δ

)
,

where Ξ1 ≤ 4.22

3.E. Example/Corollary. There exists a smooth map f : S2n+1 → B2(1), for all n = 1,2, ..., such
that the f -images of all Hopf circles S1

p ⊂ S2n+1, p ∈ CPn, have equal length l = ln (≤ 100n) and
curvatures

curv( f (S1
p))≤ 4+ ε

for a given ε > 0.
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Abstract:
Consider a symplectic embedding of a disjoint union of domains (lying in the standard

symplectic R2n) into a symplectic manifold M. We say that such an embedding is Kähler-
type, or respectively tame, if it is holomorphic with respect to some (not a priori fixed,
Kähler-type) integrable complex structure on M compatible with the symplectic form, or
respectively tamed by it. Assume that M is either of the following: a complex projective space
(with the standard symplectic form); an even-dimensional torus, or a K3 surface, equipped
with an irrational Kähler-type symplectic form. Then any two Kähler-type embeddings of
a disjoint union of balls into M can be mapped into each other by a symplectomorphism
acting trivially on homology. If the embeddings are holomorphic with respect to complex
structures compatible with the symplectic form and lying in the same connected component
of the space of Kähler-type complex structures on M, then the symplectomorphism can be
chosen to be smoothly isotopic to the identity. For certain M and certain disjoint unions of
balls we describe precisely the obstructions to the existence of Kähler-type embeddings of
the balls into M. In particular, symplectic volume is the only obstruction for the existence of
Kähler-type embeddings of ln equal balls (for any l) into CPn with the standard symplectic
form and of any number of possibly different balls into a torus or a K3 surface, equipped
with an irrational symplectic form. We also show that symplectic volume is the only
obstruction for the existence of tame embeddings of disjoint unions of equal balls, polydisks,
or parallelepipeds, into a torus equipped with a generic Kähler-type symplectic form. For
balls and parallelepipeds the same is true for K3 surfaces.

Key words and phrases: sympletic manifolds, Kähler structures, symplectic embeddings

*Partially supported by HSE University Basic Research Program, FAPERJ E-26/202.912/2018 and CNPq - Process
310952/2021-2.

© 2023 Michael Entov and Misha Verbitsky
cbn Licensed under a Creative Commons “Attribution-NonCommercial 4.0 International” license (CC BY-NC 4.0)
DOI: 10.56994/JAMR.001.001.002

https://jamathr.org
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.56994/JAMR.001.001.002


KÄHLER-TYPE EMBEDDINGS OF BALLS INTO SYMPLECTIC MANIFOLDS

1 Introduction

Symplectic embeddings of balls and other domains into symplectic manifolds have been studied since
the early days of symplectic topology. So far, the existence of the embeddings (the so-called symplectic
packing problem) got most of attention and much less is known about the connectedness of the spaces of
such embeddings. The notable exception is the classical result of McDuff [McD3] about the connectedness
of the space of symplectic embeddings of disjoint unions of balls into certain 4-dimensional symplectic
manifolds – in particular, into CP2, CP1 ×CP1 and their blow-ups (see also [McD1, McD2, Lal, Bir1]
for earlier partial results on the subject and [McD4], [BLW], [Cr] for more recent extensions of McDuff’s
result).

In this paper, in an attempt to get more information about the connectedness question for symplectic
manifolds of dimension higher than 4, we consider a more restrictive class of symplectic embeddings of
disjoint unions of domains.

Namely, let M be a manifold equipped with a Kähler-type symplectic form ω – i.e., a symplectic
form compatible with some (not a priori fixed) integrable complex structure on M; such complex structures
will be called Kähler-type complex structures. We will denote by CK(M) the space of Kähler-type
complex structures on M.

We consider symplectic embeddings (of disjoint unions of domains) into (M,ω) that are holomorphic
with respect to some (not a priori fixed) integrable (Kähler-type) complex structure I on M which is
compatible with ω , or tamed by it. We will say that such a symplectic embedding is of Kähler type, or,
respectively, tame. The existence of Kähler-type embeddings, for a fixed isotopy class of the complex
structure I on M compatible with ω , has been previously studied – in a different guise – in [Ec], [Fl],
[LuWa], [Tr], [WN1], [WN2], see Remark 2.6, Remark 3.10 and part 3 of Remark 3.25.

With this terminology, we have the following hierarchy of properties of the embeddings:

Kähler-type =⇒ tame =⇒ symplectic.

A Kähler-type embedding of a domain in R2n (equipped with the standard symplectic and complex
structures) into (M,ω) which is holomorphic with respect to a complex structure I compatible with ω

can be equivalently described as a Kähler-isometric, or just Kähler, embedding of the domain into M
equipped with the Kähler metric ω(·, I·)+

√
−1ω(·, ·). In other words, an embedding of a domain into

(M,ω) is of Kähler type if and only if it is Kähler with respect to some Kähler metric whose imaginary
part is ω . The restriction of the Kähler metric to the image of the embedding is the standard flat metric.

There do exist symplectic embeddings of balls that are not of Kähler type (see below). We do not
know whether these symplectic embeddings are tame or whether there exist tame embeddings (of balls or
any other domains) that are not of Kähler-type – see Remark 3.32 and Question 3.33. Let us note that for
a disjoint union of starshaped domains (with a piecewise-smooth boundary) its Kähler-type and tame
embeddings form Symp(M)-invariant open subsets of the space of its symplectic embeddings into (M,ω)
(with respect to the C∞-topology) – see Section 5.1.

As far as the connectedness of the spaces of Kähler-type embeddings is concerned, let us note first
that a Kähler embedding into (M,ω) may be holomorphic with respect to different complex structures
compatible with ω , and, second, that two Kähler-type embeddings lying in the same Symp0(M,ω)-orbit
have to be holomorphic with respect to complex structures lying in the same orbit of the Symp0(M,ω)-
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action on the space CK(M) of Kähler-type complex structures on M, hence in the same connected
component of the set of complex structures on M compatible with ω .

Unfortunately, we know almost nothing about the latter connected components or about the space
CK(M)/Symp0(M,ω). Because of this, we cannot say much about the orbits of the Symp0(M,ω)-action
on the space of Kähler-type embeddings of given domains into (M,ω). However, we can say more
about the actions of Symp(M,ω)∩Diff0(M) and of the symplectic Torelli group SympH(M,ω) (the
group of symplectomorphisms of (M,ω) acting trivially on the homology) on the spaces of Kähler-type
embeddings of balls into (M,ω).

Namely, assume that (M,ω) is either of the following: CPn with the standard symplectic form; T2n or
a K3 surface equipped with a Kähler-type symplectic form ω which is irrational (i.e., the real cohomology
class [ω]∈ H2(M;R) is not a real multiple of a rational one). Then any two Kähler-type embeddings of an
arbitrary disjoint union of balls into (M,ω) can be mapped into each other by the action of SympH(M,ω).
If these embeddings are holomorphic with respect to complex structures compatible with ω and lying
in the same connected component of CK(M), then these embeddings can be mapped into each other by
the action of Symp(M,ω)∩Diff0(M). In particular, these two Kähler-type embeddings are holomorphic
with respect to isotopic complex structures compatible with ω .

Note that if (M,ω) is a rational or ruled closed symplectic 4-manifold, or if (M,ω) is obtained from
a rational or ruled closed symplectic 4-manifold by removing either a closed 2-dimensional symplectic
submanifold or a Lagrangian submanifold diffeomorphic to S2 or RP2 (for instance, if (M,ω) is the
standard symplectic ball), then any two symplectic embeddings of an arbitrary disjoint union of closed
balls into (M,ω) can be mapped into each other by the action of Sympc

0(M,ω) – see [McD3], [BLW] (cf.
[McD1, McD2, Lal, Bir1] for earlier partial results on the subject). In particular, this is true for any two
Kähler-type, or tame, embeddings and thus the space of such embeddings is connected (see Theorem 3.4
below).

Let us now discuss our results on the existence of Kähler-type and tame embeddings.
Following the terminology in [EV1], we say that Kähler-type, or tame, embeddings of a disjoint

union W=
⊔k

i=1Wi of compact domains with piecewise boundary into (M,ω) are unobstructed if there
are no obstructions for the existence of such embeddings of λW=

⊔k
i=1 λWi, λ > 0, into (M,ω) other

than the symplectic volume. (The domains we consider always lie in the standard symplectic R2n.) Note
that if Kähler-type embeddings of a disjoint union of domains into (M,ω) are unobstructed, this means,
in particular, that one can choose a complex structure I on M compatible with ω so that the Kähler metric
ω(·, I·)+

√
−1ω(·, ·) on M is flat outside a set of arbitrarily small volume.

Since the classical work of McDuff-Polterovich [McDP], it has been known that proving the existence
of symplectic embeddings of closed balls

⊔k
i=1 B(ri) of radii r1, . . . ,rk into a closed symplectic manifold

(M,ω) is equivalent to showing that an appropriate cohomology class of the complex blow-up M̃ of M at
k points can be represented by a symplectic form with suitable properties.

In this paper we extend the results of McDuff and Polterovich [McDP] to Kähler-type embeddings
of
⊔k

i=1 B(ri). Namely, assume M is closed. For each x = (x1, . . . ,xk), x1, . . . ,xk ∈ M, and each complex
structure I on M, denote by M̃I,x the complex blow-up of (M, I) at x1, . . . ,xk. Let Ĩ be the lift of I to M̃.
We show that

⊔k
i=1 B(ri) admits a Kähler-type embedding into (M,ω) if and only if for some complex

structure I compatible with ω and some x the cohomology class Π∗[ω]−π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R) is
Kähler with respect to Ĩ (i.e., can be represented by a Kähler form on (M̃I,x, Ĩ)). In fact, if this cohomology
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class is Kähler, then
⊔k

i=1 B(ri) admits a Kähler-type embedding into (M,ω) which is holomorphic with
respect to a complex structure on M compatible with ω and smoothly isotopic to I. Together with
information on the Kähler cones of (M̃I,x, Ĩ) for various Ĩ (compatible with ω) and x this allows us to
show the existence of Kähler-type embeddings of

⊔k
i=1 B(ri) into certain (M,ω) (see Section 3.1).

Here are some of the applications for particular symplectic manifolds (see Section 3):
If (M,ω) is either the standard symplectic CPn or a standard symplectic ball of real dimension 2n,

then for any l ∈ Z>0, Kähler-type embeddings of a disjoint union of ln equal balls are unobstructed.
In particular, this implies that for the standard complex structure on CPn and ln equal balls of total
symplectic volume smaller than the volume of CPn, there exists a Kähler form on CPn, isotopic to the
standard Fubini-Study form, so that the resulting Kähler manifold admits a Kähler (i.e., both holomorphic
and symplectic) embedding of the ln equal balls – meaning, in particular, that the Kähler metric is a
standard flat metric on the image of the balls.

For M = CP2 we also describe exactly which disjoint unions of 1 ≤ k ≤ 8 (possibly different) balls
admit Kähler-type embeddings into M. It then follows from [McD3] that any symplectic embedding of
such a disjoint union of balls into CP2 is, in fact, of Kähler type.

In the cases where M is CP1 ×CP1 or a complex blow-up of CP2 at one point equipped with any
symplectic form compatible with the orientation, we describe exactly which disjoint unions of 1 ≤ k ≤ 7
(possibly different) balls admit Kähler-type embeddings into M that are holomorphic with respect to
a complex structure isotopic to the “standard" one and compatible with the symplectic form. It again
follows from [McD3] that any symplectic embedding of such a disjoint union of balls into M is, in fact,
of Kähler type.

If M is either T2n or a K3 surface and the Kähler-type symplectic form ω on M is irrational (i.e.,
the real cohomology class [ω] ∈ H2(M;R) is not a real multiple of a rational one), then Kähler-type
embeddings of any disjoint union of balls into (M,ω) are unobstructed. If ω is rational (i.e., [ω] ∈
H2(M;R) is a real multiple of a rational class), then there may be obstructions for the existence of
Kähler-type embeddings of disjoint unions of balls into (M,ω) that are independent of the symplectic
volume. For instance, in the case M = T4 there are obstructions coming from the Seshadri constants (see
Remark 3.26). In particular, this shows that there exist symplectic embeddings of disjoint unions of balls
into (T4,ω) that are not Kähler-type.

Finally, we show that tame embeddings of disjoint unions of equal balls, or equal polydisks, or equal
parallelepipeds, into (T2n,ω) are unobstructed provided ω lies in a Diff0(T2n)-invariant open dense set of
Kähler-type symplectic forms on T2n containing all the irrational forms (the set depends on the embedded
domains). By choosing possibly smaller Diff0(T2n)-invariant open dense sets of such ω we make sure
that the unobstructedness holds, in fact, for the tame embeddings into (T2n,ω) which are holomorphic
with respect to complex structures that are not only tamed by ω but also “arbitrarily close" (in the sense
of Hodge theory) to complex structures compatible with ω . Kähler-type (not just tame) embeddings of
disjoint unions of equal balls, or equal polydisks, or equal parallelepipeds, into (T2n,ω) are unobstructed
if ω is an irrational Kähler-type symplectic form lying in an appropriate dense Diff0(T2n)-orbit in the
space of forms (the orbit depends on the embedded domains). Similar results concerning balls and
parallelepipeds hold also for symplectic manifolds underlying Kähler K3 surfaces.

We also discuss extensions of the results for K3 surfaces to a larger class of hyperkähler manifolds –
see Section 3.5.
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2 Preliminaries

Assume that M is a smooth manifold of real dimension 2n.
Denote by Diff(M) the group of diffeomorphisms of M and by Diff0(M) its identity component, and

by DiffH(M) the subgroup of Diff(M) formed by the diffeomorphisms acting trivially on the homology
of M.

For a symplectic form ω on M denote by Symp(M,ω) the group of symplectomorphisms of (M,ω),
by Symp0(M,ω) its identity component and by SympH(M,ω) the symplectic Torelli group, i.e. the
group of symplectomorphisms of (M,ω) acting trivially on homology. For a non-compact symplectic
manifold (M,ω) we denote by Sympc(M,ω) the group of compactly supported symplectomorphisms of
(M,ω) and by Sympc

0(M,ω) its identity component.

2.1 Kähler-type complex and symplectic structures

Let ω and I be a symplectic form and a complex structure on M. The form ω tames I if ω(v, Iv) > 0
for any non-zero v ∈ T M, and is compatible with I if it tames I and is also I-invariant, meaning that
ω(·, I·)+ iω(·, ·) is a Hermitian metric on (M, I). In the latter case the pair (ω, I) is called a Kähler
structure on M.

A cohomology class in H2(M;R) is called Kähler (with respect to a complex structure I on M), if
it can be represented by a symplectic form on M compatible with I. The cohomology classes that are
Kähler with respect to I form the Kähler cone of (M, I) in H2(M;R).

A symplectic/complex structure on M is said to be of Kähler type, if it appears in some Kähler
structure on M.

Example 2.1
Any complex structure on CP2 is of Kähler type [Yau1]. Whether this holds also for CPn, n > 2, is a

well-known open question – see e.g. [LiWo, Tos], cf. [HuKP].
For a closed manifold M, dimC M = 2, with an even b2(M), any complex structure on M is of Kähler

type [Buch, Lam]. In particular, any complex structure on CP1 ×CP1, CP2♯CP2 and T4 is of Kähler
type.

The Kähler-type symplectic/complex structures on T2n = R2n/Z2n are exactly the ones that can be
mapped by a diffeomorphism of T2n to a linear symplectic/complex structure – i.e., a symplectic/complex
structure whose lift to R2n has constant coefficients (see e.g. [EV1, Prop. 6.1]). There do exist complex
structures on T2n, for each n ≥ 3, that are not of Kähler-type [Som, p.212], [BSV].

If M is a smooth manifold underlying a complex K3 surface, then any complex structure on M is of
Kähler-type [Siu] and its first Chern class is zero (see e.g. [Bea2])1. It is well-known that any complex

1In fact, all smooth manifolds M underlying a complex K3 surface are diffeomorphic. They all are compact and connected.
All complex structures on such an M define the same orientation on M so that b+(M) = 3 and b−(M) = 19 – see e.g. [Bea2].
Further on, we will always equip a K3 surface with this standard orientation. Alternatively, to fix the orientation, one can use the
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structure on such an M appears in a hyperkähler structure and so does any Kähler-type symplectic form
on M – see e.g. [EV3, Prop. 5.1].

It is a well-known open question whether all symplectic forms on T2n and K3 surfaces (equipped
with the standard smooth structures) are of Kähler type – see e.g. [Don]. (There do exist exotic smooth
structures on topological K3 surfaces that admit symplectic forms – see [FiS], cf. [Ch]; it follows from the
classification of complex surfaces that these exotic smooth K3 surfaces do not admit complex structures
and therefore the symplectic forms on them are not of Kähler type). Using the Kodaira-Spencer stability
theorem [KoS2] and Torelli theorems for tori (see e.g. [BaHPV, Ch. I, Thm. 14.2]) and K3 surfaces
(see [BurR], cf. [Bea2, p.96]) one can show that the Kähler-type forms on these manifolds form an open
subset of the space of all symplectic forms (with respect to the C∞-topology – see e.g. [AmV1], cf. [StT]
for a more general result).

Denote by SK(M) the space of all Kähler-type symplectic forms on M and by CK(M) the space of all
Kähler-type complex structures on M.

We equip these spaces with the C∞-topologies (the complex structures are viewed here as integrable
almost-complex structures – i.e., (1,1)-tensors).

The space CK(M) is an open subspace of the space of all complex structures on M; both of these
spaces are locally C∞-path connected – see Proposition A.2.

Given ω ∈ SK(M), denote by Cmpt(M,ω)⊂CK(M) the space of all (Kähler-type) complex structures
on M compatible with ω .

If C0 is a connected component of CK(M), we say that ω and C0 are compatible, if some complex
structure lying in C0 is compatible with ω – i.e., if the set C0 ∩Cmpt(M,ω) is non-empty.

With this terminology, every Kähler-type ω is compatible with some connected component of CK(M).
Note that the space CK(M) is invariant under the natural action of Diff(M) (and hence of Diff0(M))

on the space of complex structures on M, but the space Cmpt(M,ω) is not invariant even under the
Diff0(M)-action.

Definition 2.2
Define the Teichmüller space of Kähler-type complex structures on M as

Teich(M) := CK(M)/Diff0(M),

and if C0 is a connected component of CK(M), then

TeichC0(M) := C0/Diff0(M).

The set TeichC0(M) is a connected component of Teich(M).
Given I ∈ CK(M), denote by [I] ∈ Teich(M) the image of I under the projection CK(M) →

Teich(M).
Let ω ∈ SK(M). Denote the image of Cmpt(M,ω) under the quotient projection CK(M)→ Teich(M)

by

Teich(M,ω) :=
Diff0(M) ·Cmpt(M,ω)

Diff0(M)
⊂ Teich(M).

fact that all complex K3 surfaces are deformation equivalent and, in particular, oriented diffeomorphic – see e.g. [Bea2].
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In other words, Teich(M,ω) is the set of points of Teich(M) that can be represented by complex
structures on M compatible with ω .

Given a connected component C0 of CK(M), the image of Cmpt(M,ω)∩C0 under the quotient
projection C0 → TeichC0(M) will be denoted by

TeichC0(M,ω) :=
Diff0(M) · (Cmpt(M,ω)∩C0)

Diff0(M)
=

= Teich(M,ω)∩TeichC0(M).

Note that the space Teich(M) may not be Hausdorff – this is the case, for instance, when M is a
smooth manifold underlying a complex K3 surface, see Remark 10.11.

2.2 Hodge decomposition

Assume M is closed.
A complex structure I on M defines a (p,q)-decomposition of any (complex-valued) differential

k-form η on M, k = 0,1, . . . ,2n – we will denote it by η = ∑p+q=k η
p,q
I . If I is of Kähler type, then the

(p,q)-decomposition on differential forms, defined by I, induces a decomposition, called the Hodge
decomposition2, on the complex cohomology of M: Hk(M;C) = ⊕p+q=kH p,q

I (M;C). Given a coho-
mology class α ∈ H∗(M;C), we will denote its (p,q)-component in the Hodge decomposition by
α

p,q
I ∈ H p,q

I (M;C). We denote H p,q
I (M;R) := H p,q

I (M;C)∩H∗(M;R). For a real cohomology class
α ∈ H2p(M;R) its (p, p)-component is also real. A differential form on M is called a (p,q)-form, and a
cohomology class of M is called a (p,q)-class (with respect to I), if their (p,q)-component is their only
non-zero component.

If ω is compatible with I, then it is a (1,1)-form with respect to I, and, accordingly, its cohomology
class is a (1,1)-class.

If a cohomology class α ∈ H2(M;R) is Kähler with respect to a Kähler-type complex structure I on
M, then for any Kähler-type complex structure I′ sufficiently C∞-close to I the class α

1,1
I′ is Kähler with

respect to I′ – see Proposition A.2.

2.3 Kähler-type and tame embeddings

Let ω be a Kähler-type symplectic form on M.
The symplectic and complex structures on R2n are always assumed to be the standard ones and will

be denoted, respectively, by ω0 and J0.
Let W1, . . . ,Wk ⊂R2n be compact domains with piecewise-smooth boundaries whose interiors contain

the origin. Denote

W :=
k⊔

i=1

Wi.

2Although the proof of the existence of the Hodge decomposition involves both the complex structure I and a Kähler form
on (M, I), one can show (see e.g. [Voi, Vol. 1, Prop. 6.11]) that, in fact, the Hodge decomposition on the cohomology depends
only on I.
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Given λ > 0, define

λW :=
k⊔

i=1

λWi.

We say that f : W → M is a smooth/symplectic/holomorphic embedding if it extends to such an
embedding of the disjoint union of some open neighborhoods of Wi, i = 1, . . . ,k. We will denote by
fi : Wi → M, i = 1, . . . ,k, the restriction of such an extension to a neighborhood of Wi.

Clearly, if f : W→ (M,ω) is a symplectic embedding, then

Vol(W,ω0)< Vol(M,ω) = ⟨[ω]n, [M]⟩.

(Recall that Vol stands for the symplectic volume and ⟨·, ·⟩ stands for the natural pairing between
cohomology and homology classes.)

Definition 2.3
Let f : W=

⊔k
i=1Wi → (M2n,ω) be an embedding.

Given a Kähler-type complex structure I ∈ Cmpt(M,ω), we say that the embedding f is of [I]-Kähler
type, if it is symplectic with respect to ω and holomorphic with respect to some (not a priori fixed)
complex structure J on M compatible with ω and isotopic to I, i.e. [J] = [I] ∈ Teich(M,ω). (Such a J is
tautologically of Kähler-type).

We say that the embedding f is of Kähler type, if it is symplectic with respect to ω and holomorphic
with respect to some (not a priori fixed) complex structure compatible with ω – or, in other words, if f is
of [I]-Kähler type for some (not a priori fixed, and possibly non-unique) I ∈ Cmpt(M,ω).

Given a fixed Kähler structure (ω, I) on M, we say that f : W→ (M2n,ω, I) is a Kähler embedding
if it is Kähler-isometric – i.e. both symplectic with respect to ω and holomorphic with respect to I.

We say that the embedding f : W → (M2n,ω) is tame if it is symplectic with respect to ω and
holomorphic with respect to some (not a priori fixed) Kähler-type complex structure I tamed by ω .

Assuming that M is closed and ε > 0, we say that the embedding f is ε-tame if it is symplectic with
respect to ω and holomorphic with respect to some (not a priori fixed) Kähler-type complex structure I
so that

• I is tamed by ω ,

• the class [ω]1,1I is Kähler,

•
∣∣∣〈([ω]2,0I +[ω]0,2I

)n
, [M]

〉∣∣∣< ε .

With the terminology as in Definition 2.3, for an embedding into a (closed) symplectic manifold
(M,ω) we have the following equivalences and hierarchy of properties:

Kähler-type ⇐⇒ [I]-Kähler type for some (possibly non-unique!) I ∈ Cmpt(M,ω),

tame ⇐⇒ ε-tame for some ε ,
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Kähler-type =⇒ ε-tame for every ε =⇒ tame =⇒ symplectic.

In general, there do exist symplectic embeddings of balls that are not of Kähler-type (see Remark
3.26), but we do not know whether there exist symplectic embeddings of balls or any other domains into
any M, equipped with a Kähler-type symplectic form, that are not tame, or tame embeddings that are not
of Kähler-type – see Remark 3.32 and Question 3.33.

Remark 2.4
For any I ∈ Cmpt(M,ω) any finite disjoint union of sufficiently small balls (and hence of arbitrary

sufficiently small domains in (R2n,ω0)) admits an [I]-Kähler-type embedding into (M,ω) – this follows
e.g. from [McDP, Prop. 5.5.A]).

Remark 2.5
If a Kähler manifold (M,ω, I) admits a Kähler embedding of a domain in R2n, its restriction to the

image of the embedding is flat. This provides a strong obstruction to the existence of Kähler embeddings
(if one fixes a Kähler structure on the manifold).

Remark 2.6
The existence of [I]-Kähler-type embeddings has been previously studied – in a different guise – in

[Ec], [Fl], [LuWa], [Tr], [WN1], [WN2] in the following setup.
Let (M,ω, I) be a closed Kähler manifold (in [Ec], [Fl], [Tr], [WN1], [WN2] it is assumed that the

complex manifold (M, I) is projective and the cohomology class [ω] ∈ H2(M;R) is the first Chern class
of an ample line bundle on (M, I). Consider the following question: Given a disjoint union W=

⊔k
i=1Wi

of domains in R2n, does there exist a Kähler form η on (M, I), isotopic to ω , such that (M,η , I) admits a
Kähler embedding of W?

One easily sees that the answer to the latter question is positive if and only if (M,ω) admits an
[I]-Kähler-type embedding of W.

Let us introduce additional terminology related to Kähler-type and tame embeddings.
Let J ⊂ CK(M) be a non-empty set. If a Kähler-type, or tame, embedding f is holomorphic with

respect to some complex structure belonging to J, we say that f favors J.
In particular, if J= C0 is a connected component C0 of CK(M), we say that such an f favors C0, or

that C0 is a favorite connected component of f .
With this terminology, tautologically,

• For I ∈ Cmpt(M,ω), every [I]-Kähler-type embedding into (M,ω) favors the Diff0(M)-orbit of I
in CK(M).

• Every Kähler-type embedding into (M,ω) favors a connected component of Cmpt(M,ω), and
consequently a connected component of CK(M).

Note that, in principle, a Kähler-type embedding may be of [I]-Kähler-type for several I ∈Cmpt(M,ω)
and may favor more than one connected component of Cmpt(M,ω) or of CK(M).
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The group Symp(M,ω) acts naturally on the space of Kähler-type, or tame, or ε-tame, embed-
dings W→ (M,ω). Consequently, so do the groups SympH(M,ω), Symp0(M,ω) and Symp(M,ω)∩
Diff0(M).

By a standard result concerning extensions of symplectic isotopies (proved as in [McDS, Thms. 3.3.1,
3.3.2]), if the domains W1, . . . ,Wk are starshaped, then any two symplectic embeddings f : W→ (M,ω),
f ′ : W→ (M,ω) can be connected by a (smooth) path of symplectic embeddings W→ (M,ω) if and only
if f and f ′ lie in the same Symp0(M,ω)-orbit – i.e., there exists φ ∈ Symp0(M,ω) such that φ ◦ f = f ′.

Also note, that if φ ◦ f = f ′ for some φ ∈ Diff(M) and f is holomorphic with respect to a complex
structure I on M, then f ′ is holomorphic with respect to the complex structure φ∗I.

These simple observations easily yield the following corollary.

Proposition 2.7
Assume that the domains W1, . . . ,Wk are starshaped.
Then any two embeddings f , f ′ : W =

⊔k
i=1Wi → (M,ω) lie in the same connected component

of the space of Kähler-type embeddings W → (M,ω) if and only if they lie in the same orbit of the
Symp0(M,ω)-action. In this case f , f ′ are holomorphic with respect to complex structures compatible
with ω that lie in the same orbit of the Symp0(M,ω)-action on CK(M). In particular, such f , f ′ favor a
common connected component of Cmpt(M,ω) and, consequently, a common connected component of
CK(M).

If Kähler-type embeddings f , f ′ : W→ (M,ω) lie in the same Symp(M,ω)∩Diff0(M)-orbit, then
they are holomorphic with respect to complex structures compatible with ω that lie in the same orbit of
the Diff0(M)-action on CK(M). In particular, there exists [I] ∈ Teich(M,ω) such that both f and f ′ are
of [I]-Kähler-type, and f , f ′ favor a common connected component of CK(M).

Let us define a quantity that will be important for the study of the portion of the volume of a target
closed symplectic manifold that can be filled out by Kähler-type and tame embeddings.

Definition 2.8
Assume M is a closed manifold equipped with a Kähler-type symplectic form ω .
Define the number 0 < νK(M,ω,W)≤ 1 by

νK(M,ω,W) := sup
λ

Vol(λW,ω0)

Vol(M,ω)
,

where the supremum is taken over all λ > 0 such that λW admits a Kähler-type embedding into (M,ω).
Given ε > 0, define the number 0 < νT,ε(M,ω,W)≤ 1 by

νT,ε(M,ω,W) := sup
λ

Vol(λW,ω0)

Vol(M,ω)
,

where the supremum is taken over all λ > 0 such that λW admits an ε-tame embedding into (M,ω). (In
view of Remark 2.4, the set of such λ is always non-empty.)
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Remark 2.9
1. Clearly,

νK(M,ω,W)≤ νT,ε1(M,ω,W)≤ νT,ε2(M,ω,W)

for any 0 < ε1 ≤ ε2.

2. The equality νK(M,ω,W) = 1, respectively νT,ε(M,ω,W) = 1, is equivalent to the claim that the
Kähler-type, respectively ε-tame, embeddings of λW into (M,ω), for all λ > 0, are unobstructed.

3 Main results

In this section we state the main results of the paper.
For r > 0 we denote by B2n(r) the closed Euclidean 2n-dimensional ball of radius r in R2n centered

at the origin.

3.1 Kähler-type embeddings of balls in general symplectic manifolds and Kähler classes
on complex blow-ups

In this section M, dimR = 2n, is a closed connected manifold equipped with a Kähler-type symplectic
form ω . Let k ∈ Z>0, r̄ = (r1, . . . ,rk) ∈ (R>0)

k.
Denote by M̂k ⊂ Mk the set of k-tuples of pairwise distinct points of M.
For each x := (x1, . . . ,xk) ∈ M̂k and each complex structure I on M, let M̃I,x denote the complex

blow-up of (M, I) at x1, . . . ,xk.
For any I and x we will use the same notation for the following objects (suppressing the dependence

on I and x):
- The lift of I to M̃I,x will be denoted by Ĩ.
- Π : M̃I,x → M will denote the natural projection.
- The cohomology classes Poincaré-dual to the fundamental homology classes of the exceptional divisors
will be denoted by e1, . . . ,ek ∈ H2(M̃I,x;R).

For all I and x the groups H2(M̃I,x;R) can be canonically identified (preserving the numbering of the
classes e1, . . . ,en) and we will use these identifications without further mention.

Definition 3.1
Define the set K(r̄)⊂ CK(M)× M̂k as

K(r̄) :=
{
(I,x)

∣∣ I ∈ Diff0(M) ·Cmpt(M,ω),x ∈ M̂k and

Π
∗[ω]−π

k

∑
i=1

r2
i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ

}
,

Let pr : K(r̄)→ CK(M) be the natural projection.
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Define the set K(r̄)⊂ Teich(M,ω) as

K(r̄) := pr(K(r̄))/Diff0(M) =

=
{

ι ∈ Teich(M,ω)
∣∣ ∃I ∈ Cmpt(M,ω), [I] = ι , and x ∈ M̂k s.t.

Π
∗[ω]−π

k

∑
i=1

r2
i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ

}
.

Let C0 be a connected component of CK(M).
Define the set KC0(r̄)⊂ C0 × M̂k as

KC0(r̄) := (C0 × M̂k)∩K(r̄) =

=
{
(I,x)

∣∣ I ∈ Diff0(M) ·
(
C0 ∩Cmpt(M,ω)

)
,x ∈ M̂k and

Π
∗[ω]−π

k

∑
i=1

r2
i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ

}
.

Define the set KC0(r̄)⊂ TeichC0(M,ω) as

KC0(r̄) := K(r̄)∩TeichC0(M) = pr (KC0(r̄))/Diff0(M) =

=
{

ι ∈ TeichC0(M,ω)
∣∣ ∃I ∈ C0 ∩Cmpt(M,ω), [I] = ι , and x ∈ M̂k s.t.

Π
∗[ω]−π

k

∑
i=1

r2
i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ

}
.

As we will see in Corollary 5.19, the fibers of pr : K(r̄)→ CK(M) are connected and therefore K(r̄)
(respectively, KC0(r̄)) is connected if and only if so is K(r̄) (respectively, KC0(r̄)).

Theorem 3.2
Let M be a closed manifold equipped with a Kähler-type symplectic form ω .

(I) The set
⊔k

i=1 B2n(ri) admits a Kähler-type embedding into (M,ω) if and only if for some I ∈
Cmpt(M,ω) and some x ∈ M̂k the cohomology class Π∗[ω]−π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with
respect to Ĩ.

More precisely, assume I is a complex structure on M compatible with ω and Σ ⊂ (M, I) is a proper
(possibly empty) complex submanifold. If M =CPn ×CP1 (with the product complex structure), we also
allow Σ = (CPn−1 ×CP1)∪ (CPn ×pt) (which is not smooth).

Then the following conditions are equivalent:

• There exists x = (x1, . . . ,xk) ∈ M̂k, x1, . . . ,xk ∈ M \Σ, such that the cohomology class Π∗[ω]−
π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ.
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• There exists an [I]-Kähler-type embedding f :
⊔k

i=1 B2n(ri)→ (M \Σ,ω) which is holomorphic
with respect to the complex structure φ ∗

1 I compatible with ω , where {φt}0≤t≤1 ⊂Diff0(M), φ0 = Id,
is an isotopy such that φt(Σ) = Σ for all t ∈ [0,1].

(II) Let C0 be a connected component of CK(M). Assume that the set KC0(r̄) (or, equivalently, the set
KC0(r̄)) is connected.

Then any two Kähler-type embeddings
⊔k

i=1 B2n(ri) → (M,ω) favoring C0 lie in the same
Symp(M,ω)∩Diff0(M)-orbit. In particular, there exists [I] ∈ TeichC0(M,ω) such that both embed-
dings are of [I]-Kähler type.

If, in addition, SympH(M) acts transitively on the set of connected components of CK(M) compatible
with ω , then any two Kähler-type embeddings

⊔k
i=1 B2n(ri)→ (M,ω) lie in the same SympH(M,ω)-orbit.

For the proof of Theorem 3.2 see Section 5 (Theorem 5.9).

Remark 3.3
1. For an analogue of part (I) of Theorem 3.2 for tame embeddings see Proposition 5.17 below.

2. [Fl, Remark 5.2] states that the methods of [Fl] can be used to prove a result that, in view of Remark
2.6, is equivalent to Part (I) Theorem 3.2 in the case where ω is compatible with a complex structure I on
M, so that the complex manifold (M, I) is projective and the cohomology class [ω] ∈ H2(M;R) is the
first Chern class of an ample line bundle on (M, I).

Recall that the symplectic blow-up construction (see e.g. [McDS, Sec. 7], cf. Section 5.5 below)
associates to a complex blow-up of a symplectic manifold at a point (with respect to, say, an almost
complex structure compatible with the symplectic form and integrable near the point) a class of symplectic
forms on the blow-up. We will call such a symplectic form on the blow-up a blow-up symplectic form.
A rational (4-dimensional) symplectic manifold is either CP2 with a standard Fubini-Study symplectic
form, or CP1 ×CP1 with a product symplectic form, or their blow-up at several points equipped with a
blow-up symplectic form.

A ruled (4-dimensional) symplectic manifold is a closed symplectic 4-manifold which is the total
space of an S2-fiber bundle over a closed connected orientable 2-dimensional surface, so that all the fibers
are symplectic submanifolds [LalM].

For rational or ruled closed symplectic manifolds of real dimension 4 we have a stronger connect-
edness result, which follows directly from similar connectedness results for symplectic (not necessarily
Kähler-type) embeddings of balls that were proved in [McD3] and [BLW] (for previous partial results
see [McD1, McD2, Lal, Bir1]).

Theorem 3.4
Let (M,ω) be a rational or ruled closed symplectic manifold, dimR M = 4. Let Σ ⊂ (M,ω) be either

of the following:

(1) the empty set;
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(2) a finite union of closed compact symplectic submanifolds (without boundary) of real dimension 2
whose pairwise intersections (if they exist) are transverse and ω–orthogonal;

(3) a Lagrangian submanifold which is diffeomorphic to either S2 or RP2.

Then for any k ∈ Z>0 and any r1, . . . ,rk > 0, the following claims hold:

(I) Any two Kähler-type, respectively tame, embeddings
⊔k

i=1 B4(ri)→ (M \Σ,ω) lie in the same orbit
of the Sympc

0(M \Σ,ω)-action. In particular, (for fixed r1, . . . ,rk) the space of all such Kähler-type,
respectively tame, embeddings is connected.

(II) If there exists an [I]-Kähler-type, respectively tame, embedding
⊔k

i=1 B4(ri)→ (M \Σ,ω), then any
symplectic embedding

⊔k
i=1 B4(ri)→ (M \Σ,ω) is of [I]-Kähler type, respectively tame.

Proof of Theorem 3.4:
Any two symplectic embeddings

⊔k
i=1 B2n(ri) → (M \ Σ,ω) lie in the same orbit of the

Sympc
0(M \Σ,ω)-action:

- In case (1) this was proved in [McD3, Cor. 1.5].

- In case (2), where Σ ⊂ (M,ω) is just a symplectic submanifold, this was essentially proved in [McD3,
Cor. 1.5] – see [BLW, Prop. 2.1] where more details of the proof are spelled out in the case where the
symplectic submanifold Σ ⊂ (M,ω) is a sphere; in fact [McDO, Cor. 1.2.13], used in the proof of [BLW,
Prop. 2.1], yields the same claim for any Σ as in (2).

- In case (3), this is proved in [BLW, Thm. 1.1].

Since [I]-Kähler-type, respectively tame, embeddings into (M \ Σ,ω) are mapped by the
Sympc

0(M \ Σ,ω)-action into [I]-Kähler-type, respectively tame, embeddings, we get the results of
both parts of the theorem.

Now let us discuss applications of Theorem 3.2 and Theorem 3.4 to particular symplectic manifolds.

3.2 The case of projective spaces and their products

Denote by ωFS, or by ωFS,n, the Fubini-Study form on CPn normalized so that
∫
CP1 ωFS = π . Let Ist be

the standard complex structure on CPn.
We also set CP0 := pt.

Theorem 3.5
Consider the manifold M := CPn1 × . . .×CPnm , n1, . . . ,nm > 0, n1 + . . .+ nm =: n, endowed with

the symplectic form ωc := c1ωFS,n1 ⊕ . . .⊕ cmωFS,nm , c := (c1, . . . ,cm) ∈ (R>0)
m. Let I be the complex

structure on M which is the product of the standard complex structures on the factors.
Let l1, . . . , lm ∈ Z>0 so that [l1 : . . . : lm] = [c1 : . . . : cm] ∈ RPm. Let

k :=
(n1 + . . .+nm)!

n1! · . . . ·nm!
ln1
1 · . . . · lnm

m .
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Let Σ ⊂ (M, I) be a proper (possibly empty) complex submanifold. If M = CPn1 ×CP1, we also allow
Σ = (CPn1−1 ×CP1)∪ (CPn1 ×pt).

Then Kähler-type embeddings of disjoint unions of k equal balls into (M \Σ,ωc) are unobstructed.
More precisely, if kVol(B2n(r),ω0) < Vol(M,ω), then for each proper (possibly empty) complex

submanifold Σ ⊂ (M, I), there exists an [I]-Kähler-type embedding of
⊔k

i=1 B2n(r) into (M,ω) which is
holomorphic with respect to a complex structure on M that is compatible with ω and isotopic to I by an
isotopy preserving Σ (as a set).

For the proof of Theorem 3.5 see Section 6 (Theorem 6.1).
For n1 = . . . = nm = 1, l1 = . . . = lm = l, c1 = . . . = cm = 1 and Σ = /0, Theorem 3.5 yields the

following corollary.

Corollary 3.6
Let M := (CP1)m. Consider a symplectic form ω on M which is the product of equal Fubini-Study

forms on the CP1-factors of M. Let I be the complex structure on M which is the product of the standard
complex structures on the CP1-factors of M.

Then for any l ∈ Z>0, Kähler-type embeddings of disjoint unions of m!lm equal balls into (M,ω) are
unobstructed.

More precisely, if m!lmVol(B2n(r),ω0) < Vol(M,ω), then there exists a Kähler-type embedding
of
⊔m!lm

i=1 B2n(r) into (M,ω) which is holomorphic with respect to a complex structure on M that is
compatible with ω and isotopic to I.

Now let us consider the case of a single complex projective space.

Theorem 3.7
A. For each l ∈ Z>0, Kähler-type embeddings of disjoint unions of ln equal balls into (CPn,ωFS) are
unobstructed.

More precisely, if lnVol(B2n(r),ω0)< Vol(CPn,ωFS), then for any complex structure J on CPn com-
patible with ωFS (and, in particular, for the standard complex structure Ist) and for each proper (possibly
empty) complex submanifold Σ ⊂ (CPn,J), there exists a [J]-Kähler-type embedding of

⊔ln

i=1 B2n(r) into
(CPn,ωFS) which is holomorphic with respect to a complex structure on CPn that is compatible with ωFS

and isotopic to J by an isotopy preserving Σ (as a set).

B. The group SympH(CPn,ωFS) acts transitively on the set of connected components of CK(CPn)
compatible with ωFS.

C. For any k ∈ Z>0 and r1, . . . ,rk > 0, any two Kähler-type embeddings
⊔k

i=1 B2n(ri)→ (CPn,ωFS) (if
they exist!) lie in the same orbit of the SympH(CPn,ωFS)-action.

They lie in the same orbit of the Symp(CPn,ωFS)∩Diff0(CPn)-action if and only if they favor a
common connected component of CK(CPn). In the latter case there exists [I] ∈ Teich(CPn,ωFS) such
that both embeddings are of [I]-Kähler type.
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Part A of Theorem 3.7 follows from Theorem 3.5. For the proof of parts B and C of Theorem 3.7 see
Section 6 (Theorem 6.6).

Remark 3.8
Let us say that a Kähler-type complex structure I on a closed manifold M is rigid, if the connected

component of CK(M) containing I coincides with the Diff0(M)-orbit of I (or, in other words, if any
Kähler-type complex structure on M obtained from I by a smooth deformation is, in fact, isotopic to I).

As we will see in Theorem 6.2, any Kähler-type complex structure on CPn is rigid. More examples
of rigid complex structures include so-called Z-manifolds (i.e., Calabi-Yau manifolds with hn−1,1 = 0,
[CDP]).

The proof of part C of Theorem 3.7 allows to generalize the last claim of part C as follows: Assume
(M,ω) is a closed manifold such that ω is compatible with a rigid complex structure I. Let C0 be a
connected component of CK(M) containing I. Then two Kähler-type embeddings

⊔k
i=1 B2n(ri)→ (M,ω)

favoring C0 lie in the same orbit of the Symp(M,ω)∩Diff0(M)-action.

Applying part A of Theorem 3.7 with Σ = /0, with Ist = J being fixed, and with ωFS being varied by
an isotopy, we get the following immediate corollary.

Corollary 3.9
Let l ∈ Z>0.
Then for any r > 0 such that lnVol(B2n(r),ω0) < Vol(CPn,ωFS) there exists a Kähler form ω on

(CPn, Ist) isotopic to ωFS and such that the Kähler manifold (CPn, Ist ,ω) admits a Kähler (i.e., both
holomorphic and symplectic) embedding of

⊔ln

i=1 B2n(r) with the standard flat Kähler metric on it.

In particular, part A of Theorem 3.7 and Corollary 3.9 mean that by changing either Ist or ωFS by an
isotopy one can get a Kähler metric on CPn which is the standard flat Kähler metric on ln disjoint balls in
CPn that fill out an arbitrarily large portion of the volume of the manifold.

Remark 3.10
For l = 1 and n = 2 Corollary 3.9 was proved in [Ec].

Applying Theorem 3.7 with J = Ist and with the hyperplane Σ = CPn−1 ⊂ (CPn, Ist), we get the
following corollary.

Corollary 3.11
For any l ∈ Z>0 and any r > 0 such that lnVol(B2n(r),ω0)< Vol(B2n(1),ω0) there exists a Kähler-

type embedding of
⊔ln

i=1 B2n(r) into (B2n(1),ω0) which is holomorphic with respect to a complex structure
on B2n(1) isotopic to J0 and compatible with ω0.

Now let us focus on the case of (CP2,ωFS).
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Proposition 3.12
There is only one connected component of CK(CP2) compatible with ωFS – it is the connected

component of CK(CP2) containing Ist . Any two complex structures in that connected component are
isotopic.

For the proof of Proposition 3.12 see Section 6 (Proposition 6.11). We do not know whether CK(CP2)
has more than one connected component – see Remark 6.3.

Proposition 3.12 yields the following immediate corollary.

Corollary 3.13
Any Kähler-type embedding (of any disjoint union of domains) into (CP2,ωFS) is of [Ist ]-Kähler

type: it is symplectic with respect to ωFS and holomorphic with respect to a complex structure on CP2

isotopic to Ist and compatible with ωFS.

Recall the following theorem of McDuff-Polterovich [McDP].

Theorem 3.14
Let Σ ⊂ (CP2, Ist) be a proper (possibly empty) complex submanifold.

A. Assume that 1 ≤ k ≤ 8 and r1 ≥ r2 ≥ . . .≥ rk > 0.
Then the following conditions are equivalent:

• There exists a symplectic embedding
⊔k

i=1 B4(ri)→ (CP2 \Σ,ωFS).

• The radii r1, . . . ,rk satisfy the following inequalities (listed in [McDP, Cor. 1.3G]):

(v) ∑
k
i=1 r4

i < 1 (volume inequality),

(c1) r2
1 + r2

2 < 1, if 2 ≤ k ≤ 8,

(c2) r2
1 + . . .+ r2

5 < 2, if 5 ≤ k ≤ 8,

(c3) 2r2
1 +∑

7
i=2 r2

i < 3, if 7 ≤ k ≤ 8,

(c4) 2r2
1 +2r2

2 +2r2
3 + r2

4 + . . .+ r2
8 < 4, if k = 8,

(c5) 2∑
6
i=1 r2

i + r2
7 + r2

8 < 5, if k = 8,

(c6) 3r2
1 +2∑

8
i=2 r2

i < 6, if k = 8.

B. Symplectic embeddings of a disjoint union of k = l2, l ∈ Z>0, equal balls into (CP2 \Σ,ωFS) are un-
obstructed: if kVol(B4(r),ω0)< Vol(CP2,ωFS), then there exists a symplectic embedding

⊔k
i=1 B4(r)→

(CP2 \Σ,ωFS).

Here is an extension of Theorem 3.14 to Kähler-type embeddings of balls into CP2.
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Theorem 3.15
A. Assume that 1 ≤ k ≤ 8 and r1 ≥ r2 ≥ . . .≥ rk > 0.

Then for any proper (possibly empty) complex submanifold Σ⊂ (CP2, Ist), any symplectic embedding⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS) is, in fact, of [Ist ]-Kähler type: it is holomorphic with respect to a complex

structure on CP2 that is compatible with ωFS and isotopic to Ist by an isotopy fixing Σ (as a set).
Accordingly, by part A of Theorem 3.14, such a Kähler-type embedding

⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS)

exists if and only if the radii r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) listed in part A of Theorem
3.14.

B. For any proper (possibly empty) complex submanifold Σ ⊂ (CP2, Ist) and any k = l2, l ∈ Z>0, any
symplectic embedding

⊔k
i=1 B4(r)→ (CP2 \Σ,ωFS) is, in fact, of [Ist ]-Kähler type: it is holomorphic

with respect to a complex structure on CP2 that is compatible with ωFS and isotopic to Ist by an isotopy
preserving Σ (as a set).

Accordingly, by part B of Theorem 3.14, such Kähler-type embeddings
⊔k

i=1 B4(r)→ (CP2 \Σ,ωFS)
are unobstructed: they exist if and only if kVol(B4(r),ω0)< Vol(CP2,ωFS).

C. Let Σ ⊂ (CP2,ωFS) be either of the following:

(1) the empty set;
(2) a finite union of closed compact symplectic submanifolds (without boundary) of real dimension 2
whose pairwise intersections (if they exist) are transverse and ω–orthogonal;
(3) a Lagrangian submanifold which is diffeomorphic to either S2 or RP2.

For any k ∈ Z>0 and r1, . . . ,rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(ri)→ (CP2 \Σ,ωFS)
(if they exist!) lie in the same orbit of the Sympc

0(CP2 \ Σ,ωFS)-action, meaning that the space of
Kähler-type embeddings

⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS) is connected.

Part B of Theorem 3.15 follows from part A of Theorem 3.7 and from part (II) of Theorem 3.4. Part
C of Theorem 3.15 follows directly from part (I) of Theorem 3.4. For the proof of part A of Theorem
3.15 see Section 6 (Theorem 6.12).

Applying Theorem 3.15 with the hyperplane Σ = CP1 ⊂ CP2 and recalling that (CP2 \CP1,ωFS) is
symplectomorphic to (B4(1),ω0), we get the following corollary.

Corollary 3.16
A. Assume that 1 ≤ k ≤ 8 and r1 ≥ r2 ≥ . . .≥ rk > 0.

Then any symplectic embedding
⊔k

i=1 B4(ri)→ (B4(1),ω0) is, in fact, of Kähler-type: it is holomor-
phic with respect to a complex structure on B4(1) that is compatible with ω0 and isotopic to I0.

Accordingly, by part A of Theorem 3.14, such a Kähler-type embedding
⊔k

i=1 B4(ri)→ (B4(1),ω0)
exists if and only if the radii r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) listed in part A of Theorem
3.14.

B. For any k = l2, l ∈ Z>0, any symplectic embedding
⊔k

i=1 B4(r)→ (B4(1),ω0) is, in fact, of Kähler
type: it is holomorphic with respect to a complex structure on B4(1) that is compatible with ω0 and
isotopic to I0.
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Accordingly, by part B of Theorem 3.14, such Kähler-type embeddings
⊔k

i=1 B4(r)→ (B4(1),ω0) are
unobstructed: they exist if and only if kVol(B4(r),ω0)< Vol(B4(1),ω0).

C. For any k ∈ Z>0 and r1, . . . ,rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(ri)→ (B4(1),ω0) (if
they exist!) lie in the same orbit of the Sympc

0(B
4(1),ω0)-action, meaning that the space of Kähler-type

embeddings
⊔k

i=1 B4(ri)→ (B4(1),ω0) is connected.

Remark 3.17
1. The description of the Kähler cone of the blow-up of CP2 at k ≥ 10 (generic) points is a difficult open
question related, in particular, to the Nagata conjecture (which is equivalent to the claim that a certain
cohomology class of the blow-up lies in the boundary of the Kähler cone, see e.g. [Bir3]). In particular,
if there is a counterexample to the Nagata conjecture for k ≥ 10, it would yield that the Kähler-type
embeddings of k equal balls to CP2 are not unobstructed – see [McDP, Thm. 1.4.B]. Since by a theorem
of Biran [Bir2], symplectic embeddings of a disjoint union of k ≥ 10 equal balls into (CP2,ωFS) are
unobstructed, this would imply the existence of such symplectic embeddings into (CP2,ωFS) that are not
of Kähler type.

2. The connectedness of the space of symplectic embeddings of
⊔k

i=1 B4(ri) into (CP2,ωFS) and
(B4(1),ω0) was proved in [McD3] (for previous partial results see [McD1, McD2, Lal, Bir1]).

3. By a theorem of Taubes [Tau1, Tau2, Tau3], any symplectic form on CP2 can be mapped into a positive
multiple of ωFS by a diffeomorphism of CP2. Therefore, any symplectic form ω on CP2 is of Kähler
type and the results above stated for (CP2,ωFS) hold also for (CP2,ω).

3.3 The cases of CP2♯CP2 and CP1 ×CP1

Consider CP2 with the standard complex structure on it. Define M = CP2♯CP2 – as a smooth manifold
– as the complex blow-up of CP2 at one point. Let E ⊂ M be the exceptional divisor and CP1 ⊂ M a
projective line. Given 0 < λ < π , let ωλ be a Kähler form on M such that ⟨[ωλ ], [CP1]⟩= π , ⟨[ωλ ], [E]⟩=
λ .

The manifold M = CP2♯CP2 admits Kähler-type complex structures J2l+1, l ∈ Z≥0, such that
(M,J2l+1) is biholomorphic to the odd Hirzebruch surface F2l+1. In particular, we assume J1 = Ĩst ,

as we identify the Hirzebruch surface F1 with (C̃P
2
Ist ,x, Ĩst). Each complex structure on M can be mapped

by a diffeomorphism into exactly one complex structure J2l+1 – this follows from [FriQ]. In fact, this
diffeomorphism can be chosen to lie in Diff0(M) – see [Mee].
Theorem 3.18

Let M = CP2♯CP2 and let ωλ be a Kähler-type form on M as above.
Then the following claims hold:

A. Let 2 ≤ k ≤ 8, R1 ≥ R2 ≥ . . .≥ Rk−1 > 0. Assume that r1 := R1 ≥ . . .≥ ri−1 := Ri−1 ≥ ri :=
√

λ/π ≥
ri+1 := Ri ≥ . . .≥ rk := Rk−1.

Then for any proper (possibly empty) complex submanifold Σ ⊂ (M,J1), the following conditions are
equivalent:
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• There exists a [J1]-Kähler-type embedding
⊔k−1

i=1 B4(Ri)→ (M \Σ,ωλ ) holomorphic with respect
to a complex structure on M that is compatible with ωλ and isotopic to J1 by an isotopy preserving
Σ (as a set).

• The numbers r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) in part A of Theorem 3.14.

For r1, . . . ,rk satisfying the inequalities (v), (c1)-(c6) in part A of Theorem 3.14, any symplectic
embedding

⊔k−1
i=1 B4(Ri)→ (M \Σ,ωλ ) is, in fact, of [J1]-Kähler type.

B. For any k ∈ Z>0 and R1, . . . ,Rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(Ri) → (M,ωλ ) (if
they exist!) lie in the same orbit of the Symp0(M,ωλ )-action, meaning that the space of Kähler-type
embeddings

⊔k
i=1 B4(Ri)→ (M,ωλ ) is connected.

Part B of Theorem 3.18 follows directly from part (I) of Theorem 3.4. For the proof of part A of
Theorem 3.18 see Section 7 (Theorem 7.3).

Remark 3.19
1. We do not know under which conditions on r1, . . . ,rk the complex structure J1 on M can be replaced in
part A of Theorem 3.18 by J2l+1, l > 0. In order to obtain these conditions one needs to get an explicit
description of the Kähler cones of the blow-ups of the Hirzebruch surfaces F2l+1, l > 0, at k points – see
Section 7.

2. For any
⊔k

i=1 B4(Ri), the connectedness of the space of symplectic embeddings of
⊔k

i=1 B4(Ri) into
(M,ωλ ) was proved in [McD3] (also see [Lal] for a previous partial result for k = 1).

3. Theorem 3.18 admits a generalization concerning Kähler-type embeddings of a disjoint union of k balls
into a complex blow-up of CP2 at j points (1 ≤ k ≤ 8− j, j = 1, . . . ,7) equipped with an appropriate
symplectic form. The proof is a straightforward modification of the proof of Theorem 3.18.

Now let M =CP1×CP1 – as a smooth manifold. Let ω0 be the Fubini-Study form on CP1 normalized
so that

∫
CP1 ω0 = π . Given µ ≥ 1, let ωµ = µω0 ⊕ω0.

The manifold M = CP1 ×CP1 admits Kähler-type complex structures J2l , l ∈ Z≥0, such that (M,J2l)
is biholomorphic to the even Hirzebruch surface F2l . In particular, J0 can be viewed as the standard
complex structure on M = CP1 ×CP1. Each complex structure on M = CP1 ×CP1 can be mapped
by a diffeomorphism into exactly one complex structure J2l – this follows from [FriQ]. In fact, this
diffeomorphism can be chosen to lie in Diff0(M) – see [Mee].

Theorem 3.20
Let M = CP1 ×CP1 and let ωµ be as above.
Let Σ ⊂ (M,J0) be either a proper (possibly empty) complex submanifold or Σ = (pt×CP1)∪(CP1×

pt).
Then the following claims hold:
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A. Assume 2 ≤ k ≤ 8, R1,R2, . . . ,Rk−2 > 0, 0 < Rk−1 < 1. Consider the numbers

R2
1

µ +1−R2
k−1

,
R2

2

µ +1−R2
k−1

, . . . ,
µ −R2

k−1

µ +1−R2
k−1

,
1−R2

k−1

µ +1−R2
k−1

,

sort them in the non-increasing order and denote the resulting k numbers by r1 ≥ . . .≥ rk.
Then the following conditions are equivalent:

• There exists a [J0]-Kähler-type embedding
⊔k−1

i=1 B4(Ri)→ (M \Σ,ωµ) holomorphic with respect
to a complex structure on M that is compatible with ωµ and isotopic to J0 by an isotopy preserving
Σ (as a set).

• The numbers r1, . . . ,rk defined above satisfy the inequalities in part A of Theorem 3.14.

For r1, . . . ,rk satisfying the inequalities (v), (c1)-(c6) in part A of Theorem 3.14, any symplectic
embedding

⊔k−1
i=1 B4(Ri)→ (M \Σ,ωµ) is, in fact, of [J0]-Kähler type.

B. Assume that µ = 1.
Then for any l ∈Z>0, any symplectic embedding of a disjoint union of 2l2 equal balls into (M \Σ,ω1)

is, in fact, of [J0]-Kähler type, and such symplectic (or, equivalently, [J0]-Kähler-type) embeddings are
unobstructed.

More precisely, if 2l2Vol(B4(r),ω0) < Vol(M,ω1), then there exists a Kähler-type embedding of⊔2l2

i=1 B4(r) into (M \ Σ,ω1) which is holomorphic with respect to a complex structure on M that is
compatible with ω1 and isotopic to J0 by an isotopy preserving Σ (as a set).

C. For any k ∈ Z>0 and R1, . . . ,Rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(Ri)→ (M \Σ,ωµ) (if
they exist!) lie in the same orbit of the Sympc

0(M \Σ,ωµ)-action, meaning that the space of Kähler-type
embeddings

⊔k
i=1 B4(Ri)→ (M \Σ,ωµ) is connected.

Part B of Theorem 3.20 is a particular case of Corollary 3.6 (for m = 2). Part C of Theorem 3.20
follows directly from part (I) of Theorem 3.4. For the proof of part A of Theorem 3.20 see Section 8
(Theorem 8.3).

Remark 3.21
1. For Σ=(pt×CP1)∪(CP1×pt) the manifold (M\Σ,ωµ) is symplectomorphic to (B2(1)×B2(

√
µ),ω0⊕

ω0). Therefore Theorem 3.20 yields a straightforward corollary concerning Kähler-type embeddings of
balls into (B2(1)×B2(

√
µ),ω0 ⊕ω0).

For symplectic embeddings of balls a similar corollary, as well as the result of part B of Theorem
3.20, were proved in [McDP].

2. We do not know under which conditions on r1, . . . ,rk the complex structure J0 on M can be replaced
in part A of Theorem 3.20 by J2l , l > 0. In order to obtain these conditions one needs to get an explicit
description of the Kähler cones of the blow-ups of the Hirzebruch surfaces F2l , l > 0, at k points – see
Section 8.
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3. For any R1, . . . ,Rk the connectedness of the space of symplectic embeddings
⊔k

i=1 B4(Ri)→ (M,ωλ )
was proved in [McD3].

3.4 The case of tori and K3 surfaces

Let M, dimR M = 2n, be either T2n or a smooth manifold (of real dimension 4) underlying a complex K3
surface.

As before, let ω be a Kähler-type symplectic form on M.
In the case M = T2n one can assume, without loss of generality, that ω is linear (see Example 2.1).
Recall that ω is called rational if the real cohomology class [ω] ∈ H2(M;R) is a real multiple of a

rational one, and irrational otherwise.
Irrational Kähler-type symplectic forms on tori and K3 surfaces are compatible with so-called

Campana-simple complex structures. Namely, given a Kähler-type complex structure I on a closed
manifold M, the union of all positive-dimensional proper complex subvarieties of (M, I) is either a
countable union of proper analytic subvarieties of M (and hence has a dense connected complement)
or the whole M (see e.g. [EV1, Remark 4.2]). In the former case, the complex structure I is called
Campana-simple [Cam], [CaDV] (for more details see Section 9).

In fact, a Kähler-type complex structure on a torus is Campana-simple if and only if it has no proper
positive-dimensional complex subvarieties (see Proposition 10.4). A symplectic form ω on the torus or
a K3 surface is compatible with such a complex structure if and only if ω is irrational (see Proposition
10.5 and Proposition 10.20). See Section 3.5 for other examples of manifolds admitting Campana-simple
complex structures.

Theorem 3.22
Let M, dimR M = 2n, be either T2n or a smooth manifold (of real dimension 4) underlying a complex

K3 surface and let ω be a Kähler-type symplectic form on M.
Assume that ω is irrational.
Let k ∈ Z>0, r1, . . . ,rk > 0.
Then the following claims hold:

A. Kähler-type embeddings of
⊔k

i=1 B2n(ri) into (M,ω) are unobstructed.
More precisely, assume that Vol

(⊔k
i=1 B2n(ri),ω0

)
<Vol(M,ω) and ω is compatible with a Campana-

simple complex structure I.
Then there exists an [I]-Kähler-type embedding

⊔k
i=1 B2n(ri)→ (M,ω).

B. The group SympH(M,ω) acts transitively on the set of connected components of CK(M) compatible
with ω .

C. Any two Kähler-type embeddings
⊔k

i=1 B2n(ri)→ (M,ω) (if they exist!) lie in the same orbit of the
SympH(M,ω)-action. They lie in the same orbit of the Symp(M,ω)∩Diff0(M)-action if and only if they
favor a common connected component of CK(M). In the latter case there exists [I] ∈ Teich(M,ω) such
that both embeddings are of [I]-Kähler-type.
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Remark 3.23
Assume M = T2 is a torus of real dimension 2. In this case all symplectic forms and complex

structures on T2 are of Kähler-type and any symplectic (i.e., area-preserving) embedding into T2 is of
Kähler-type. In particular, for any symplectic form ω on T2 (note that any such form is rational!) the
result of part A of Theorem 3.22 is true and the space of Kähler-type embeddings of any disjoint union of
domains into (T2,ω) is path-connected (since the space of symplectic forms on T2 is path-connected
[Mos]).

For the proof of Theorem 3.22 see Section 10.3 (Theorem 10.21).
For a generalization of Theorem 3.22 to arbitrary closed symplectic manifolds admitting Campana-

simple complex structures compatible with the symplectic form see Theorem 9.3. In fact, we will use
Theorem 9.3 in the proof of Theorem 3.22.

For tori the existence result in Theorem 3.22 admits the following equivalent formulation.

Corollary 3.24
Assume Γ ⊂ Cn is a lattice of rank 2n. Let M := Cn/Γ be the corresponding torus. Let ω, I be

the symplectic and the complex structures on M induced by the standard flat symplectic and complex
structures on Cn = R2n.

Assume that (M, I) admits no proper positive-dimensional complex subvarieties. Let k ∈ Z>0,
r1, . . . ,rk > 0 such that Vol

(⊔k
i=1 B2n(ri),ω0

)
< Vol(M,ω).

Then there exists a Kähler form ω ′ on (M, I) isotopic to ω and a Kähler-type embedding
⊔k

i=1 B2n(ri)→
(M,ω ′) which is holomorphic with respect to I – i.e., an embedding which is symplectic with respect to
ω ′ and holomorphic with respect to I.

Proof of Corollary 3.24:
It suffices to prove a similar claim for the case where Γ = Z2n and ω and I are compatible symplectic

and complex structures on T2n = R2n/Z2n, with I being Campana-simple (the proof can be reduced to
this case by using a diffeomorphism M = Cn/Γ → T2n = R2n/Z2n induced by an R-linear isomorphism
of R2n = C2n sending Γ to Z2n). In order to prove the corollary in this case, apply part A of Theorem
3.22 and keep the complex structure fixed while changing the symplectic form by an isotopy (cf. Remark
2.6).

Remark 3.25
1. For an arbitrary Kähler-type symplectic form ω on M = T2n or on a manifold M underlying a K3
surface, the unobstructedness of symplectic – but not necessarily Kähler-type or tame – embeddings of an
arbitrary collection of disjoint balls was proved in [EV1, Thm. 3.1]. In the case M = T4 a weaker version
of this result had been previously proved by Latschev-McDuff-Schlenk [LatMS].

2. It is a well-known open problem (see e.g. [McDS, Ch.15, Prob. 15]) whether SympH(T2n,ω) =
Symp0(T2n,ω) for a Kähler-type symplectic form ω on T2n, n > 1. If the answer to this question
is positive, then Part B of Theorem 3.22 would imply that the space of the Kähler-type embeddings
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⊔k
i=1 B2n(ri) → (T2n,ω) is path-connected for any k ∈ Z>0 and r1, . . . ,rk > 0. Conversely, a counter-

example to the latter claim would show that SympH(T2n,ω) ̸= Symp0(T2n,ω).
In the case when M is a manifold underlying a K3 surface it is known by the result of Sheridan-Smith

[ShS] that SympH(M,ω) ̸=Symp0(M,ω) for certain Kähler-type symplectic structures ω on M, including
some irrational ones. It has been known since the work [Sei] of Seidel that for some (not necessarily
irrational) Kähler-type symplectic forms ω on M one has Symp(M,ω)∩Diff0(M) ̸= Symp0(M,ω); by a
result of Smirnov [Sm], this definitely holds for some irrational Kähler-type symplectic forms ω on M.

3. Corollary 3.24 for one ellipsoid – and, in particular, for one ball – was previously proved by Luef and
Wang [LuWa] using a method similar to the one in this paper. Let us note that the paper [LuWa] by Luef
and Wang provides a very interesting connection between Kähler-type embeddings of ellipsoids into tori
and Gabor frames – an important notion in signal processing.

We expect that the technique used in [LuWa], as well as the techniques developed in [EV2] in relation
to symplectic embeddings of ellipsoids into tori and K3 surfaces, can be used to generalize Theorem 3.22
to Kähler-type embeddings of ellipsoids.

Remark 3.26
The assumption that the symplectic form ω on M is irrational is essential in Theorem 3.22: otherwise

there may be obstructions for the existence of Kähler-type embeddings of (disjoint unions of) balls
into (M,ω) that are independent of the symplectic volume – for instance, the obstructions coming from
Seshadri constants.

For simplicity, we will explain this below in the case of one ball and M = T2n, expanding on [LatMS,
Sec. 2.2].

First, recall the definition of Seshadri constants. Let (X , I) be a complex projective manifold and let
ω be a Kähler form on (X , I) such that the cohomology class [ω] is integral and equals the first Chern
class of an ample line bundle on (X , I). Assume that x ∈ X , π : X̃ → X is the complex blow-up of X at x,
and E := π−1(x) is the exceptional divisor. Define the Seshadri constant

ε(X , I, [ω],x) := sup
{

s > 0 |
〈

π
∗[ω], [C̃]

〉
− sE · [C̃]≥ 0

for all (possibly singular) complex curves C̃ ⊂ X̃
}
.

Observe that E · [C̃] is the multiplicity of the singularity of C at x.
Then

ε(X , I, [ω],x) =sup
{

πr2 | There exists a Kähler form ω
′, [ω ′] = [ω],

and a Kähler embedding f : B2n(r)→ (X ,ω ′, I), (3.1)

f ∗ω
′ = ω0, f ∗I = J0, f (0) = x

}
.

For a proof see [Ec, Thm. 0.6], [Fl, Thm. 1.4], [WN2, Thm. 1.3], cf. [LuWa, Thm. A]. (It had been
previously observed in [Laz] that the inequality ε(X , I, [ω],x) ≥ [the right-hand side in (3.1)] follows
from the results of [McDP]).
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Assume that ω is a rational symplectic form on T2n. For the study of the symplectic and Kähler-type
embeddings in (T2n,ω) we may assume then, without loss of generality, that [ω] ∈ H2(T2n;Z). Let I be a
complex structure on T2n compatible with ω . Consider an ample holomorphic bundle L on T2n such that
c1(L) = [ω]. The complex manifold (T2n, I) can be viewed as an abelian variety and L as its polarization.

Since the identity component of the group of biholomorphisms of a complex torus acts transitively on
the torus, ε(T2n, I, [ω],x) depends only on I and [ω] and not on x∈T2n, so we will denote ε(T2n, I, [ω]) :=
ε(T2n, I, [ω],x).

Since Vol(B2n(r),ω0) = πnr2n, (3.1) implies that

sup
{

Vol(B2n(r),ω0) | There exists a Kähler-type embedding

f : (B2n(r),ω0)→ (T2n,ω)
}
= sup

I∈Cmpt(M,ω)

ε
n(T2n, I, [ω]),

where the supremum in the right-hand side is taken over all I compatible with ω .
There exist examples where

sup
I∈Cmpt(M,ω)

ε
n(T2n, I, [ω])< Vol(T2n,ω).

For instance, consider the torus T4 = R4/Z4 equipped with the symplectic form ω = d p1 ∧dq1 +d p2 ∧
dq2, where p1, p2,q1,q2 are the coordinates on R4. For any complex structure I on T4 compatible with ω

one can biholomorphically identify (T4, I) with a principally polarized abelian variety. In this case, by a
result of Steffens [Ste, Prop. 2], we have ε(T4, I, [ω])≤ 4/3 for all I compatible with ω . At the same
time Vol(T4,ω) =

∫
T4 ω2 = 2. Thus,

sup
I∈Cmpt(M,ω)

ε
2(T4, I, [ω])≤ (4/3)2 < 2 = Vol(T4,ω).

This yields an obstruction, independent of the symplectic volume, for the existence of Kähler-type
embeddings of a ball into (T4,ω): a ball whose volume is between (4/3)2 and 2 = Vol(T4,ω) does not
admit Kähler-type embeddings into (T4,ω). At the same time, by [LatMS, Thm. 1.1], such a ball does
admit a symplectic embedding into (T4,ω). Thus, there exists a symplectic embedding of a ball which is
not of Kähler type. We do not know whether such an embedding is tame.

Let us now consider tame embeddings of balls into tori and K3 surfaces.

Theorem 3.27
Let M, dimR M = 2n, be either T2n or a smooth manifold (of real dimension 4) underlying a complex

K3 surface.
Let ω1, ω2 be Kähler-type forms on M that are irrational and satisfy

∫
M ωn

1 =
∫

M ωn
2 > 0.

Let Wi ⊂ R2n, i = 1, . . . ,k, be compact domains with piecewise-smooth boundary whose interiors
contain the origin. Assume that H2(Wi;R) = 0 for all i. Set W :=

⊔k
i=1Wi.

Then, for any ε > 0,
νT,ε(M,ω1,W) = νT,ε(M,ω2,W).
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For the proof of Theorem 3.27 see Section 11 (Theorem 11.6).

Remark 3.28
Theorem 3.27 generalizes a similar result in [EV1] about symplectic (not necessarily tame) embed-

dings and its proof is similar to the proof in [EV1].

Let us present applications of Theorem 3.27.

Corollary 3.29
Assume:

• M is either T2n or a smooth manifold underlying a K3 surface.

• W :=
⊔k

i=1 B2n(ri) is a disjoint union of k (possibly different) balls.

• ε > 0.

Then the following claims hold:

A. For any irrational Kähler-type symplectic form ω on M we have

νK(M,ω,W) = 1,

meaning that Kähler-type embeddings of λW into (M,ω) are unobstructed.

B. There exists a Diff+(M)-invariant open dense set of Kähler-type symplectic forms on M, depending on
W and ε and containing, in particular, all irrational Kähler-type symplectic forms on M, so that for each
ω in this set νT,ε(M,ω,W) = 1 – meaning that ε-tame embeddings of λW into (M,ω) are unobstructed.

Corollary 3.30
Assume:

• M = T2n.

• W :=
⊔k

i=1Wi is either a disjoint union of k identical copies of a 2n-dimensional polydisk

B2n1(R1)× . . .×B2nl (Rl), n1 + . . .+nl = n, R1, . . . ,Rl > 0, l > 1,

or a disjoint union of k identical copies of a parallelepiped

P(e1, . . . ,e2n) :=

{
2n

∑
j=1

s je j,0 ≤ s j ≤ 1, j = 1, . . . ,2n

}
,

where e1, . . . ,e2n is a basis of the vector space R2n.
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• ε > 0.

Then the following claims hold:

A. For any positive volume there exists a dense Diff+(T2n)-orbit (of an irrational Kähler-type symplectic
form depending on W) in the space of Kähler-type symplectic forms of that volume on T2n such that
for any ω ′ in this orbit we have νK(T2n,ω ′,W) = 1 – or, in other words, Kähler-type embeddings
λW→ (T2n,ω ′) are unobstructed.

B. There exists a Diff+(T2n)-invariant open dense set of Kähler-type symplectic forms on T2n, depending
on W and ε and containing, in particular, all irrational Kähler-type symplectic forms on T2n, so that for
each ω ′ in this set νT,ε(T2n,ω ′,W) = 1 – or, in other words, ε-tame embeddings λW→ (T2n,ω ′) are
unobstructed.

Corollary 3.31
Assume:

• M is a smooth manifold underlying a K3 surface.

• W :=
⊔k

i=1Wi is a disjoint union of k identical copies of a parallelepiped

P(e1, . . . ,e2n) :=

{
2n

∑
j=1

s je j,0 ≤ s j ≤ 1, j = 1, . . . ,2n

}
,

where e1, . . . ,e2n is a basis of the vector space R2n.

• ε > 0.

Then there exists a Diff+(M)-invariant open dense set of Kähler-type symplectic forms on M,
depending on W and ε and containing, in particular, all irrational Kähler-type symplectic forms on M, so
that for each ω ′ in this set νT,ε(M,ω ′,W) = 1, meaning that ε-tame embeddings of λW into (M,ω ′) are
unobstructed.

For the proof of Corollary 3.29, Corollary 3.30 and Corollary 3.31 see Section 11. These corollaries
generalize similar results for symplectic – but not necessarily tame – embeddings that were proved in
[EV1].

Remark 3.32
We know only one way to show the possible existence of embeddings (of a disjoint union of domains)

into (M,ω) that are symplectic and non-tame, or tame and not Kähler-type – via the volume restrictions:
e.g., if Kähler-type embeddings cannot fill more than a certain portion of the volume of (M,ω) while
tame embeddings can. This is how we got in Remark 3.26 that there exist symplectic embeddings (of
balls) that are not of Kähler-type. It would be interesting to find out whether there are other ways of
detecting symplectic and non-tame, or tame and not Kähler-type, embeddings.
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Together with Corollary 3.29, this leads to the following questions.

Question 3.33
Does there exist a closed manifold equipped with a Kähler-type symplectic form that admits a

symplectic embedding which is not tame, or a tame embedding which is not of Kähler-type? In particular,
does there exist a rational Kähler-type symplectic form ω on M = T2n, n > 1, or on a smooth manifold
M underlying a complex K3 surface, and a disjoint union of balls W, Vol(W,ω0)< Vol(M,ω), so that
W does not admit a tame embedding into (M,ω)?

3.5 The IHS-hyperkähler case

K3 surfaces are particular examples of so called IHS-hyperkähler manifolds, that is, compact hyperkähler
manifolds of maximal holonomy. Most of the results of Section 3.4 generalize to such manifolds. In this
section we present relevant definitions and statements.

Recall that a hyperkähler manifold is a manifold equipped with three complex structures I1, I2, I3
satisfying the quaternionic relations and three symplectic forms ω1,ω2,ω3 compatible, respectively,
with I1, I2, I3, so that the three Riemannian metrics ωi(·, Ii·), i = 1,2,3, coincide. Such a collection H=
{I1, I2, I3,ω1,ω2,ω3} of complex structures and symplectic forms on a manifold is called a hyperkähler
structure. All the complex and symplectic structures appearing in a hyperkähler structure induce the
same orientation on the manifold.

Assume that M is a closed connected and simply connected manifold.
The Levi-Civita connection of a Kähler manifold preserves its complex structure and the Kähler

form. Therefore, the Levi-Civita connection of a hyperkähler manifold preserves the three complex
structures I1, I2, I3 and the three symplectic forms ω1,ω2,ω3. The subgroup of GL(R4n) preserving both
the quaternionic Hermitian metric and the quaternionic action is called the compact symplectic group
and is denoted by Sp(n). This is the group of all quaternionic unitary matrices; it can also be obtained
as a maximal compact form of a complex symplectic group Sp(C2n). Since the Levi-Civita connection
of (M,g, I1, I2, I3) preserves the metric and the quaternionic operators, its holonomy belongs to Sp(n).
However, a priori the holonomy group can be smaller; for example, for a hyperkähler flat torus, the
holonomy is trivial. The de Rham theorem and Berger’s classification of irreducible holonomies imply
that any compact hyperkähler manifold has a finite covering which is decomposed into a product of
a torus and manifolds with maximal holonomy; this result is called the Bogomolov decomposition
theorem, [Bo1]. This theorem is the reason why the maximal holonomy hyperkähler manifolds are also
called irreducible holomorphically symplectic (IHS).

A maximal holonomy compact hyperkähler manifold can be characterized cohomologically: M has
maximal holonomy if and only h2,0(M) = 1 and b1(M) = 0. Here h2,0(M) denotes the dimension of the
group of closed, holomorphic 2-forms on M, for any of its complex structures.

K3 surfaces, as well as the Hilbert schemes of points for K3 surfaces, are known to admit IHS-
hyperkähler structures.

We say that a symplectic/complex structure on M is of IHS-hyperkähler type, if it appears in some
maximal holonomy hyperkähler structure. In particular, all IHS-hyperkähler-type symplectic and complex
structures are of Kähler type.
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Remark 3.34
1. Note that even if a symplectic and a complex structure are of IHS-hyperkähler type and compatible, it
still does not mean that they can be included in the same IHS-hyperkähler structure.

2. All complex structures and all Kähler-type symplectic structures on a K3 surface are in fact of
IHS-hyperkähler type – see e.g. [EV3, Prop. 3.1]. As we have already mentioned, it is an open question
whether any symplectic form on a K3 surface is of Kähler type.

3. Manifolds admitting IHS-hyperkähler structures are also called hyperkähler manifolds of maximal
holonomy, because the holonomy group of a hyperkähler manifold is Sp(n) (the group of invertible
quaternionic n×n-matrices) – and not its proper subgroup – if and only if the hyperkähler structure is
IHS [Bes].

4. Note that the property of being IHS is a topological invariant: a holomorphically symplectic Kähler
manifold M, dimC M = 2n, is IHS if and only if π1(M) = 0 and there exists a primitive integral quadratic
form q on H2(M;R) (called the Bogomolov-Beauville-Fujiki form [Bea1], [Fu]) that satisfies, for some
rational C > 0, the Fujiki relation

∫
M η2n =Cq(η ,η)n.

Therefore, the set of IHS-hyperkähler type symplectic/complex structures on a given IHS-hyperkähler
manifold coincides with the set of hyperkähler-type symplectic/complex structures – i.e., the symplec-
tic/complex structures appearing in some hyperkähler structure.

Now we can go over Section 2 and define IHS-hyperkähler-type embeddings by replacing the words
“Kähler-type" in the relevant definitions by the words “IHS-hyperkähler-type". In particular, in this way
we can define IHS-hyperkähler-type symplectic embeddings of domains in R4n into M equipped with
an IHS-hyperkähler-type symplectic form.

Note that, in view of part 2 of Remark 3.34, for symplectic embeddings into a K3 surface being of
IHS-hyperkähler type is the same as being of Kähler type.

The results of Section 3.4 on Kähler-type embeddings generalize to the IHS-hyperkähler case as
follows:

- Part A of Theorem 3.22 generalizes directly to the IHS-hyperkähler case as long as one assumes that the
Campana-simple complex structure I is of IHS-hyperkähler-type.

- The claim in part C of Theorem 3.22 concerning the action of Symp(M,ω)∩Diff0(M) generalizes to the
IHS-hyperkähler case, if CK(M) is replaced by the space of the IHS-hyperkähler-type complex structures
on M. For a general IHS-hyperkähler manifold (M,ω) we cannot say anything about the transitivity of
the SympH(M,ω)-action.

Let us discuss the results on ε-tame embeddings into (M,ω) for an IHS-hyperkähler-type form ω .
One can define tame and ε-tame embeddings into (M,ω) exactly as in Definition 2.3 using Kähler-type
complex structures. Another possibility is to modify the definition of tame and ε-tame embeddings
into (M,ω) by using IHS-hyperkähler-type complex structures in Definition 2.3 instead of Kähler-type
ones. The claim νT,ε(M,ω1,W) = νT,ε(M,ω2,W) of Theorem 3.27 holds for the original νT,ε defined
in Definition 2.8, as well as for a version of νT,ε defined using the ε-tame embeddings in the second
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sense above, if ω1 and ω2 lie in the same connected component of the space of IHS-hyperkähler-type
symplectic forms on M.

In Section 12 we discuss how to modify the proofs of the results of Section 3.4 in order to obtain the
above-mentioned results in the IHS-hyperkähler case.

4 Plan of the paper and an outline of the proofs

In this section we describe the plan of the paper and outline the proofs.
In order to simplify the exposition, let us fix a connected component C0 of CK(M) and the radii

r1, . . . ,rk > 0 of the balls from the beginning. Let r̄ := (r1, . . . ,rk).
In Section 5 we prove Theorem 3.2 and Theorem 9.3. Namely, we define the following spaces:

- The space PairsC0 formed by pairs (η , f ), where η is a Kähler-type symplectic form on M isotopic to ω

and f :
⊔k

i=1 B2n(ri)→ (M,η) is a Kähler-type embedding favoring C0.

- The Teichmüller space PairsC0 := PairsC0/Diff0(M).

- The space TriplesC0
formed by triples (I,x,h), where I ∈ Diff0(M) ·Cmpt(M,ω), x = (x1, . . . ,xk) ∈ M̂k,

so that the pair (I,x) lies in the set KC0(r̄) defined in Definition 3.1, and h :=
⊔k

i=1 hi :
⊔k

i=1 B2n(ri)→
(M, I) is a holomorphic embedding such that hi(0) = xi, i = 1, . . . ,k.

- The Teichmüller space TriplesC0
:= TriplesC0

/Diff0(M).
We then construct a continuous surjective map Φ : TriplesC0

→ PairsC0 . The construction uses
the symplectic blow-up and blow-down operations similar to the ones used in [McDP]. Let us note
that for the local constructions on which these operations are based we use the regularized maximum
of plurisubharmonic functions while in [McDP] a different analytic technique is used. We also need
the regularized maximum tool to construct a Kähler form on (M̃I,x, Ĩ) in the class Π∗[ω]−π ∑

k
i=1 r2

i ei ∈
H2(M̃I,x;R) which is standard on a neighborhood of each exceptional divisor – this is needed to obtain a
Kähler form on M by the symplectic blow-down construction (unlike in [McDP], where the goal was to
produce a symplectic, not necessarily Kähler, form on M, and this was done much easier, using Moser’s
method for forms on M̃I,x).

The symplectic blow-down construction, enhanced as we have just described, and a relative version of
Moser’s method are used to construct Φ, and the symplectic blow-up is used to verify that Φ is surjective.
The continuity of Φ is verified using the observation that the set PairsC0 is discrete and therefore it
suffices to check that the preimage of a point is open, which is then proved using again a relative version
of Moser’s method.

We then prove Theorem 3.2 as follows.
The mere existence of Φ implies that if KC0(r̄) (and hence TriplesC0

) is non-empty, there exists a
Kähler-type embedding

⊔k
i=1 B2n(ri)→ (M,ω) favoring C0.

The connectivity of the set KC0(r̄) (see Definition 3.1) yields the transitivity of the Symp(M)∩
Diff0(M)-action on the space of Kähler-type embeddings

⊔k
i=1 B2n(ri)→ (M,ω) favoring C0 as follows.

Using methods of complex geometry (the Kodaira-Spencer stability and the Demailly-Paun description of
the Kähler cones of fibers of an analytic deformation family) we show that the connectivity of KC0(r̄) is
equivalent to the connectivity of KC0(r̄). The latter easily implies the connectivity of TriplesC0

. Since
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Φ is continuous and surjective, we get that PairsC0 is connected, and since it is discrete, it is just a point.
This easily implies the transitivity of the Symp(M)∩Diff0(M)-action.

In Section 9 we consider the case of a closed symplectic manifold for which the symplectic form is
compatible with a so-called Campana-simple complex structure – i.e., a Kähler-type complex structure
admitting “few" complex subvarieties. Examples of such manifolds include tori and smooth manifolds
underlying complex K3 surfaces equipped with irrational Kähler-type symplectic forms. The general
results on Kähler-type embeddings of balls into such manifolds, proved in Section 9, are used further
in the paper to deduce the results on such embeddings into tori and K3 surfaces stated in Section 3.4.
The key existence result on such embeddings is based on the observation, made already in [LatMS],
[EV1], that for any Campana-simple complex structure I compatible with ω and any Campana-generic
x1, . . . ,xk ∈ (M, I), x := (x1, . . . ,xk), we have (I,x) ∈ K(r̄), as long as Vol(

⊔k
i=1 B2n(ri)) < Vol(M,ω).

This follows from the Demailly-Paun description of the Kähler cone of a closed Kähler manifold [DP].

In Sections 6, 7, 8, 10 we discuss the cases of the specific M: complex projective spaces and their
products, Hirzebruch surfaces, tori and K3 surfaces. In each of these cases we discuss the structure of
the Teichmüller space of Kähler-type complex structures on M and of its subset formed by equivalence
classes of complex structures compatible with a given symplectic form on M, as well as the Kähler
cones of the complex blow-ups of M. We use this information in order to apply our general results about
Kähler-type embeddings of balls and deduce the results in Section 3 about these specific M.

In Section 11 we discuss the proofs of the results in Section 3.4. concerning tame embeddings of
arbitrary domains. The strategy of the proof of Theorem 3.27 is the same as for a similar claim in [EV1].
Namely, with M being either T2n or a smooth manifold underlying a K3 surface, the group Diff+(M)
of orientation-preserving diffeomorphisms of M acts on the space SK1(M) of Kähler-type forms on M
of total volume 1. The function ω 7→ νT,ε(M,ω,W) is clearly invariant under the action. We will show
that this function is lower semicontinuous (with respect to the C1-topology on SK(M)) – the proof is
a modification of the proof of a similar claim in [EV1]. Then we use the result from [EV1] saying
that the orbit of a form ω ∈ SK1(M) under the action of Diff+(M) is dense in SK1(M), as long as ω

is irrational. Since the orbits of both ω1 and ω2 are dense in SK1(M), we get, by the lower semicon-
tinuity, that νT,ε(M,ω1,W)≤ νT,ε(M,ω2,W) and νT,ε(M,ω1,W)≥ νT,ε(M,ω2,W), which means that
νT,ε(M,ω1,W) = νT,ε(M,ω2,W). Then the proofs of Corollary 3.29, Corollary 3.30 and Corollary 3.31
follow the same lines as the proof of [EV1, Cor. 3.3] where the existence of symplectic embeddings of
polydisks into tori was proved.

In Section 12 we discuss how the proofs in the K3 case can be modified (or just carried over without
any changes) in order to prove the results in the hyperkähler case stated in Section 3.5.

Finally, in Section A (the Appendix) we discuss various well-known facts concerning the dependence
of the Hodge decomposition on the complex structure, the deformations of complex structures, Moser’s
method, and Alexander’s trick that we use in the paper and for which we could not find a direct reference
in the literature.
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5 Kähler-type embeddings of balls and blow-ups

As before, let M, dimR M = 2n, be a closed connected manifold admitting Kähler structures. Let ω be a
Kähler-type symplectic form on M.

Let k ∈ Z>0, r1, . . . ,rk > 0, r̄ = (r1, . . . ,rk).
Let C0 be a connected component of CK(M).

From now on, all the spaces of maps between manifolds and of differential forms and complex
structures on manifolds will be endowed with the C∞-topologies. All the product/quotient spaces
will be endowed with the product/quotient topologies.

5.1 The Symp(M,ω)∩Diff0(M)-action on the space of Kähler-type embeddings

Denote:

EmbM,ω

(⊔k
i=1 B2n(ri)

)
– the space of the symplectic embeddings

⊔k
i=1 B2n(ri)→ (M,ω);

EKM,ω

(⊔k
i=1 B2n(ri)

)
⊂ EmbM,ω

(⊔k
i=1 B2n(ri)

)
– the space of the Kähler-type embeddings⊔k

i=1 B2n(ri)→ (M,ω);

EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
– the space of the Kähler-type embeddings

⊔k
i=1 B2n(ri)→ (M,ω) favoring C0.

Given a symplectic embedding f :
⊔k

i=1 B2n(ri) → (M,ω), any symplectic embedding
f ′ :
⊔k

i=1 B2n(ri)→ (M,ω) sufficiently C∞-close to f can be mapped in f by an element of Symp0(M,ω),
and moreover, this element can be chosen arbitrarily close to the identity, provided f ′ is sufficiently
C∞-close to f . This fact is standard and follows from the well-known Alexander trick and the symplectic
isotopy extension results – see Corollary A.5 for details.

Since symplectomorphisms of (M,ω) map Kähler-type embeddings into Kähler-type embeddings,
this yields that EKM,ω

(⊔k
i=1 B2n(ri)

)
is an open Symp(M,ω)-invariant subset of EmbM,ω

(⊔k
i=1 B2n(ri)

)
(in the C∞-topology). This yields the following corollary.

Proposition 5.1
The space

EKM,ω

(⊔k
i=1 B2n(ri)

)
Symp0(M,ω)

,

and consequently the space
EKM,ω

(⊔k
i=1 B2n(ri)

)
Symp(M,ω)∩Diff0(M)

,

and its subspace
EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
Symp(M,ω)∩Diff0(M)

,
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are discrete.

Definition 5.2
Define PairsC0 as the set of pairs (η , f ), where η ∈ Diff0(M) ·ω and f :

⊔k
i=1 B2n(ri)→ (M,η) is

Kähler-type embedding into (M,η) favoring C0. (Note that the embedding here is into (M,η), not
(M,ω)!)

Define

PairsC0 := PairsC0/Diff0(M).

For each (η , f ) ∈ PairsC0 , denote by {η , f} ∈ PairsC0 the element of PairsC0 represented by (η , f ) –
i.e., the Diff0(M)-orbit of (η , f ).

The following proposition follows easily from the definitions.

Proposition 5.3
The natural map

EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
Symp(M,ω)∩Diff0(M)

→ PairsC0

is a homeomorphism. In particular, in both cases PairsC0 is discrete.

A discrete topological space is connected if and only if it is a point. Together with Proposition 5.3,
this immediately yields the following corollary.

Corollary 5.4
The Symp(M,ω)∩Diff0(M)-action on EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
is transitive if and only if PairsC0

is connected.

Proposition 5.5
Assume (ηt , ft), 0 ≤ t ≤ 1, is a smooth family in PairsC0 .
Then all (ηt , ft), 0 ≤ t ≤ 1, lie in the same orbit of the Diff0(M)-action on PairsC0 .

Proof of Proposition 5.5:
The forms ηt , 0 ≤ t ≤ 1, form a smooth family of cohomologous symplectic forms. Hence, by

Moser’s theorem [Mos], all these forms can be identified by the Diff0(M)-action with η0. Under such
an identification, { ft}0≤t≤1 becomes a smooth family of symplectic embeddings { ft :

⊔k
i=1 B2n(ri)→

(M,η0)}0≤t≤1. By the symplectic isotopy extension result (see e.g. [McDS, Thm. 3.3.1]), all such ft lie
in the same Symp0(M,η0)-orbit. This proves the proposition.
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5.2 From holomorphic to Kähler-type embeddings of balls

As before, for each x := (x1, . . . ,xk) ∈ M̂k and each complex structure I on M, let M̃I,x denote the complex
blow-up of (M, I) at x1, . . . ,xk.

For any I and x we will use the same notation for the following objects (suppressing the dependence
on I and x):
- The lift of I to M̃I,x will be denoted by Ĩ. This complex structure is of Kähler-type (see e.g. [Voi, Vol I,
Prop. 3.24]). If I′ is another complex structure on M coinciding with I near each xi, i = 1, . . . ,k, then it
also lifts to M̃I,x and its lift will be denoted by Ĩ′.
- Π : M̃I,x → M will denote the natural projection.
- Ei := Π−1(xi), i = 1, . . . ,k, is an exceptional divisor.
- The cohomology classes Poincaré-dual to the fundamental homology classes of Ei, i = 1, . . . ,k, will be
denoted by e1, . . . ,ek ∈ H2(M̃I,x;R).

For all I and x the groups H2(M̃I,x;R) can be canonically identified (preserving the numbering of the
classes e1, . . . ,en) and we will use these identifications without further mention.

Definition 5.6
Define TriplesC0

as the set of triples (I,x,h), where

• (I,x) ∈KC0(r̄), meaning that

I ∈ Diff0(M) · (Cmpt(M,ω)∩C0) ,

x := (x1, . . . ,xk) ∈ M̂k,

and the cohomology class Π∗[ω]−π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ.

• h =
⊔k

i=1 hi :
⊔k

i=1 B2n(ri) → (M, I) is a holomorphic embedding into (M, I) so that hi(0) = xi,
i = 1, . . . ,xk.

Set TriplesC0
:= TriplesC0

/Diff0(M).
For each (I,x,h) ∈ TriplesC0

, denote by {I,x,h} ∈ TriplesC0
the element of TriplesC0

represented
by (I,x,h) – i.e., the Diff0(M)-orbit of (I,x,h).

For each κ > 0 define
Rκ : R2n → R2n, Rκ(x) := κx.

The proof of Theorem 3.2 is based on the following key propositions.

Proposition 5.7
There exists a continuous surjective map Φ : TriplesC0

→ PairsC0 with the following properties:

1. For each (I,x,h) ∈ TriplesC0
,

Φ({I,x,h}) = {η ,h◦Rκ}
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for a symplectic form η compatible with I and cohomologous to ω and for a sufficiently small 0 < κ ≤ 1,
so that the embedding h◦Rκ :

⊔k
i=1 B2n(ri)→ M is symplectic with respect to η and holomorphic with

respect to I.

2. If η is a symplectic form on M compatible with a complex structure I and cohomologous to ω and
f =

⊔k
i=1 fi :

⊔k
i=1 B2n(ri)→ (M,η) is a symplectic embedding into (M,η) holomorphic with respect to

I, then, for xi := fi(0), i = 1, . . . ,k, and x := (x1, . . . ,xk), we have (I,x, f ) ∈ TriplesC0
and Φ({I,x, f}) =

{η , f}.

Proposition 5.8
The space TriplesC0

is connected if only if the set KC0(r̄) (see Definition 3.1) is connected.

For the proof of Proposition 5.7 see Section 5.5. The proof of Proposition 5.8 will be given in
Section 5.6.

Let us now prove Theorem 3.2. For convenience, we restate it here.

Theorem 5.9 (=Theorem 3.2)
Let M be a closed manifold equipped with a Kähler-type symplectic form ω .

(I) The set
⊔k

i=1 B2n(ri) admits a Kähler-type embedding into (M,ω) if and only if for some I ∈
Cmpt(M,ω) and some x ∈ M̂k the cohomology class Π∗[ω]−π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R), is Kähler with
respect to Ĩ.

More precisely, assume I is a complex structure on M compatible with ω and Σ ⊂ (M, I) is a proper
(possibly empty) complex submanifold. If M = CPn1 ×CP1 (with the product complex structure), we
also allow Σ = (CPn1−1 ×CP1)∪ (CPn1 ×pt).

Then the following conditions are equivalent:

1. There exists x = (x1, . . . ,xk) ∈ M̂k, x1, . . . ,xk ∈ M \ Σ, so that the cohomology class Π∗[ω]−
π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ.

2. There exists an [I]-Kähler-type embedding f :
⊔k

i=1 B2n(ri)→ (M \Σ,ω) which is holomorphic
with respect to a complex structure φ ∗

1 I compatible with ω , where {φt}0≤t≤1 ⊂ Diff0(M), φ0 = Id,
is an isotopy such that φt(Σ) = Σ for all t ∈ [0,1].

(II) Let C0 be a connected component of CK(M). Assume that the set KC0(r̄) (or, equivalently, the set
KC0(r̄)) is connected.

Then any two Kähler-type embeddings
⊔k

i=1 B2n(ri) → (M,ω) favoring C0 lie in the same
Symp(M,ω)∩Diff0(M)-orbit. In particular, there exists [I] ∈ TeichC0(M,ω) such that both embed-
dings are of [I]-Kähler type.

If, in addition, SympH(M) acts transitively on the set of connected components of CK(M) compatible
with ω , then any two Kähler-type embeddings

⊔k
i=1 B2n(ri)→ (M,ω) lie in the same SympH(M,ω)-orbit.
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Proof of Theorem 5.9 (=Theorem 3.2):
Let us prove part (I) of Theorem 5.9.
Let C0 be a connected component of CK(M) containing the complex structure I.
Define the set Y ⊃Σ as follows: If Σ is a complex submanifold of (M, I), set Y =Σ. If M =CPn1 ×CP1

and Σ= (CPn1−1×CP1)∪(CPn1 ×pt), let Y be the union of Σ and of the closure of an open neighborhood
of (CPn1−1 ×CP1)∩ (CPn1 ×pt).

Let us prove 1 =⇒ 2. Assume that x = (x1, . . . ,xk) ∈ M̂k, x1, . . . ,xk ∈ M \Σ, so that the cohomology
class Π∗[ω]−π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ. Choose a holomorphic embedding
h =

⊔k
i=1 hi :

⊔k
i=1 B2n(ri + ε)→ (M, I), for some ε > 0, so that hi(0) = xi, i = 1, . . . ,k, and Imh∩Y = /0.

Then (I,x,h) ∈ TriplesC0
.

By part 1 of Proposition 5.7, there exist a symplectic form η compatible with I and cohomologous
to ω and a sufficiently small 0 < κ ≤ 1, so that the embedding h◦Rκ :

⊔k
i=1 B2n(ri)→ M is symplectic

with respect to η and holomorphic with respect to I. In particular, Im(h ◦Rκ)∩Y = /0. The linear
family of 2-forms connecting η and ω is formed by cohomologous symplectic forms compatible with
I and, in particular, their restrictions to Σ are non-degenerate (in the case M = CPn1 ×CP1 and Σ =
(CPn1−1 ×CP1)∪ (CPn1 × pt), the restrictions of the forms to both CPn1−1 ×CP1 and CPn1 × pt are
non-degenerate). By a relative version of Moser’s theorem (see Proposition A.3, parts II and III), there
exists an isotopy {φt}0≤t≤1 ⊂ Diff0(M), φ0 = Id, φt(Σ) = Σ for all t ∈ [0,1], so that (φ−1

1 )∗ω = η outside
Y . Then φ−1 ◦h◦Rκ is an embedding of

⊔k
i=1 B2n(ri) into M \Σ which is symplectic with respect to ω

and holomorphic with respect to the complex structure φ ∗I on M compatible with ω .
Now let us prove 2=⇒ 1. Assume f =

⊔k
i=1 fi :

⊔k
i=1 B2n(ri)→ (M\Σ,ω) is a Kähler-type embedding

holomorphic with respect to a complex structure J := φ ∗
1 I, which is compatible with ω , where {φt}0≤t≤1 ⊂

Diff0(M) is an isotopy such that φ0 = Id, φt(Σ) = Σ for all t ∈ [0,1]. Let xi := fi(0), i = 1, . . . ,k. Set
x := (x1, . . . ,xk). Then, by property 2 of Φ listed in Proposition 5.7, (J,x, f ) ∈ TriplesC0

, meaning, in
particular, that the cohomology class Π∗[ω]−π ∑

k
i=1 r2

i ei in H2(M̃J,x;R) is Kähler with respect to J̃. Since
x1, . . . ,xk ∈ M \Σ and φ1(Σ) = Σ, we get that the cohomology class Π∗[ω]−π ∑

k
i=1 r2

i ei in H2(M̃I,x;R) is
Kähler with respect to Ĩ.

This finishes the proof of part (I) of Theorem 5.9.
Let us prove part (II) of Theorem 5.9.
Assume that the set KC0(r̄) is connected. By Proposition 5.8, this means that TriplesC0

is connected.
Since, by Proposition 5.7, Φ : TriplesC0

→ PairsC0 is a surjective continuous map, we get that
PairsC0 is connected. Hence, Corollary 5.4 implies that Symp(M,ω)∩Diff0(M) acts transitively on

EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
. In particular, by Proposition 2.7, there exists [I] ∈ TeichC0(M,ω) such that

both embeddings are of [I]-Kähler type.
Assume, in addition, that SympH(M) acts transitively on the set of connected components of CK(M)

compatible with ω . Then any element of EKM,ω

(⊔k
i=1 B2n(ri)

)
can be mapped by SympH(M) into an

element of the space EKM,ω,C0

(⊔k
i=1 B2n(ri)

)
. The transitivity of the Symp(M,ω)∩Diff0(M)-action on

the latter space yields that any two Kähler-type embeddings of
⊔k

i=1 B2n(ri) into (M,ω) can be mapped
into each other by an element of SympH(M,ω).

This finishes the proof of part (II) of Theorem 5.9.
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5.3 Regularized maximum

Given a (1,1)-form θ on a complex manifold with a complex structure I, we write θ > 0 if θ(v, Iv)> 0
for any non-zero tangent vector v of the manifold. If θ ′ is another (1,1)-form on the same complex
manifold, we write θ > θ ′ if θ −θ ′ > 0.

Recall from [Dem, Lemma 5.18] that for any smooth functions Q1,Q2 on a complex manifold and
any δ > 0, one can define their regularized maximum maxδ{Q1,Q2}. It is a smooth function on the same
manifold, depending smoothly on δ , and satisfying the following conditions:

1. max{Q1,Q2} ≤ maxδ{Q1,Q2} ≤ max{Q1,Q2}+δ ;

2. maxδ{Q1,Q2}(y) = Q j(y), if Qi(y)+2δ ≤ Q j(y), i, j = 1,2, i ̸= j.

3. If ϑ is a Hermitian form on the manifold and
√
−1∂ ∂̄Qi >−ϑ , i = 1,2, then

√
−1∂ ∂̄ max

δ

{Q1,Q2}>−ϑ .

5.4 Blow-up – local constructions

First, we recall some standard local constructions concerning the blow-up of Cn at the origin.
Denote by z1, . . . ,zn the complex coordinates on Cn. For z = (z1, . . . ,zn) ∈ Cn denote

|z| :=
√
|z1|2 + . . .+ |zn|2.

As before, let ω0 be the standard symplectic form on Cn ∼= R2n. It can be written as

ω0 =
√
−1∂ ∂̄ |z|2/2. (5.2)

Let σ be the Fubini-Study symplectic form on CPn−1 normalized by
∫
CP1 σ = π .

Let L⊂ Cn ×CPn−1 be the incidence relation, i.e. L := {(z, l) | z ∈ l}. It is the complex blow-up of
Cn at the origin. Let pr1 : L→ Cn, pr2 : L→ CPn−1 be the natural projections.

For r > 0, denote L(r) := pr−1
1 (B2n(r)). We will also write L(0) := pr−1

1 (0).
Given c,r > 0, define a differential 2-form ρ(c,r) on L as

ρ(c,r) := c2 pr∗1ω0 + r2 pr∗2σ .

The restriction of pr1 to L\ pr−1
1 (0) is a diffeomorphism L\ pr−1

1 (0)→ Cn \0. One can easily see
that it identifies the form ρ(c,r) on L\L(0) with the form (pr1)∗ρ(c,r) on Cn \0 that can be written as

(pr1)∗ρ(c,r) =
√
−1
2

∂ ∂̄
(
c2|z|2 + r2 log |z|2 +d

)
(5.3)

for any d ∈ R.
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The following two propositions and their proofs describe local constructions needed further on to
define symplectic blow-up and blow-down operations. Here we use the regularized maximum for these
constructions – cf. e.g. [McDP], [McDS], where different tools were used.

Proposition 5.10
Let r,ε > 0.
Then for any sufficiently small c > 0 there exists a Kähler form ρc on Cn \0, depending smoothly on

c, so that

• ρc = ω0 on a neighborhood of Cn \ Int B2n(r+ ε),

• ρc = (pr1)∗ρ(c,r) on a neighborhood of B2n(r)\0.

Proof of Proposition 5.10:
The functions s2−r2 and r2 log

(
(s/r)2

)
(as functions of s) coincide with their first derivatives at s = r.

The first function is convex while the second one is concave and s2−r2 > r2 log
(
(s/r)2

)
for all s> 0, s ̸= r.

Therefore for any sufficiently small c > 0 and a sufficiently small σ > 0 (depending on c) the functions
F(s) := s2 − r2 −σ and G(s) := cs2 + r2 logs2 have exactly two points s1,s2, 0 < s1 < r < s2 < r+ ε ,
where they coincide, so that F(s)< G(s) on [s1,r), while F(s)> G(s) on (s2,r+ ε].

Choose δ > 0 so that F(r)< G(r)−2δ and F(r+ ε)> G(r+ ε)+2δ .
Define H : Cn \0 → R by H(z) := maxδ{F(|z2|),G(|z2|)}, where maxδ is the regularized maximum

mentioned in Section 5.3. It follows from (5.2) and (5.3) and the properties of the regularized maximum
(see Section 5.3) that (

√
−1/2) · ∂ ∂̄H is a Kähler form on Cn \ 0 equal to (

√
−1/2) · ∂ ∂̄F = ω0 on

a neighborhood Cn \ Int B2n(r+ ε), and to (
√
−1/2) · ∂ ∂̄G = (pr1)∗ρ(c,r) on a neighborhood of the

sphere ∂B2n(r).
Define the form ρc on Cn \0 as (pr1)∗ρ(c,r) on B2n(r)\0, (

√
−1/2) ·∂ ∂̄G on the neighborhood of

∂B2n(r) and (
√
−1/2) ·∂ ∂̄H outside ∂B2n(r). It is a well-defined form. The parameters σ ,s1,s2,δ in the

construction can be chosen to depend smoothly on c and thus ρc can be assumed to depend smoothly on c.
One easily sees that ρc satisfies the bulleted properties listed in the proposition. This finishes the proof.

Proposition 5.11
Let r,ε > 0.
Then for any c > 0 there exists a Kähler form ρc on Cn, depending smoothly on c, so that

• ρc = ω0 on a neighborhood of B2n(r),

• ρc = (pr1)∗ρ(c,r) on a neighborhood of Cn \ Int B2n(r+ ε).

Proof of Proposition 5.11:
For an appropriate constant d ∈ R the functions F(s) := s2 + d and G(s) := c2s2 + r2 log

(
(s/r)2

)
(as functions of s) are equal at some point s1 ∈ (r,r+ ε), so that F(s)> G(s) on [r,s1), F(s)< G(s) on
(s1,s2] for some s2 ∈ (s1,r+ ε).
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Having chosen such s1,s2, pick δ > 0 so that F(r)> G(r)+2δ and F(s2)< G(s2)−2δ .
Define H : Cn \0 → R by H(z) := maxδ{F(|z2|),G(|z2|)}, where maxδ is the regularized maximum

mentioned in Section 5.3. It follows from (5.2) and (5.3) and the properties of the regularized maximum
(see Section 5.3) that (

√
−1/2) · ∂ ∂̄H is a Kähler form on Cn \ 0 equal to (

√
−1/2) · ∂ ∂̄F = ω0 on

B2n(r+σ) \ Int B2n(r) for some sufficiently small σ > 0, and to (
√
−1/2) · ∂ ∂̄G = (pr1)∗ρ(c,r) on a

neighborhood of ∂B2n(s2).
Define a form ρc on Cn as ω0 on B2n(r), as (

√
−1/2) · ∂ ∂̄H on B2n(s2)\B2n(r) and as (

√
−1/2) ·

∂ ∂̄G = (pr1)∗ρ(c,r) on Cn \B2n(s2). It is a well-defined smooth form. The parameters d,s1,s2,δ in the
construction can be chosen to depend smoothly on c and thus ρc can be assumed to depend smoothly on c.
One easily sees that ρc satisfies the bulleted properties listed in the proposition. This finishes the proof.

Lemma 5.12 (∂ ∂̄ -lemma for a complex blow-up of a ball)
Let B ⊂ Cn be a ball centered at the origin 0 ∈ Cn. Let B̃ be the complex blow-up of B at 0.
Then any exact (1,1)-form υ on B̃ can be written as υ =

√
−1∂ ∂̄Q for a smooth real-valued function

Q on B̃.

Proof of Lemma 5.12:
Let π : B̃ → B be the natural projection. Let OB̃ be the structure sheaf (i.e., the sheaf of germs of

holomorphic functions) on B̃.
Note that Riπ∗OB̃ = 0 for all i > 1 (see [Ue, Prop. 2.14], cf. [Hi, (2), p.144]). Consequently,

H1(B̃,OB̃) = H1(B,π∗OB̃) = 0.

By the Dolbeault theorem, this implies that any ∂̄ -closed (0,1)-form on B̃ is ∂̄ -exact. The latter fact
yields, by the complex conjugation symmetry, that any ∂ -closed (1,0)-form on B̃ is ∂ -exact.

Since υ is exact, it can be written as υ = dσ for some 1-form σ on B̃. Write σ as a sum of its (1,0)
and (0,1)-parts: σ = σ1,0 +σ0,1. Then the 1-form σ0,1 is ∂̄ -closed and hence ∂̄ -exact, meaning that
σ0,1 = ∂̄S for a smooth function S on B̃. One readily checks that the form σ −dS is of type (1,0) and
∂ -closed, hence ∂ -exact, meaning that σ −dS = ∂ (−

√
−1Q) for a smooth function Q on B̃. Finally, a

direct computation yields υ = ∂̄ ∂ (−
√
−1Q) =

√
−1∂ ∂̄Q. Since the form υ is real, the function Q can

be also chosen to be real-valued. This finishes the proof of the lemma.

5.5 Symplectic forms on complex blow-ups of M

Let I be a complex structure on M and let x = (x1, . . . ,xk) ∈ M̂k.
Fix an I-holomorphic embedding h =

⊔k
i=1 hi :

⊔k
i=1 B2n(ri)→ M, such that hi(0) = xi, i = 1, . . . ,k,

and h extends to a holomorphic embedding h =
⊔k

i=1 hi :
⊔k

i=1 B2n(ri+ε)→ M for some ε > 0. Each map
hi : B2n(ri + ε)→ M, i = 1, . . . ,k, lifts to the unique map h̃i : L(ri + ε)→ M̃I,x such that hi ◦ pr1 = Π◦ h̃i,
where pr1 : L→ Cn is the projection defined in Section 5.4. For any c,r > 0 the map h̃i, i = 1, . . . ,k,
identifies the form ρ(c,r) on L(ri+ε) with a form on a neighborhood of the exceptional divisor Ei ⊂ M̃I,x

that will be denoted by ρxi(c,r). Each ρxi(c,r) is a symplectic form compatible with Ĩ.
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Given a cohomology class α ∈ H2(M;R), define the cohomology class α̃r̄ ∈ H2(M̃I,x;R) by

α̃r̄ := Π
∗
α −π

k

∑
i=1

r2
i ei. (5.4)

Proposition 5.13
Let α ∈ H2(M;R). Assume that the cohomology class α̃r̄ ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ.
Then there exists a symplectic form θ̃ on M̃I,x which is compatible with Ĩ, represents α̃r̄, and equals

to ρxi(1,ri) on a neighborhood of Ei for each i = 1, . . . ,k.

Remark 5.14
If one drops the requirement that θ̃ is compatible with Ĩ, the existence of a symplectic form θ̃ ,

[θ̃ ] = α̃r̄, coinciding with ρxi(1,ri) on a neighborhood of each Ei can be proved much easier using
Moser’s method, as in [McDP, Pf. of Prop. 2.1.C]. The need to make θ̃ compatible with Ĩ comes from
the fact that otherwise the blow-down construction (see [McDP, Sec. 5]) applied to θ̃ will produce only
a symplectic, but not necessarily a holomorphic, embedding of balls. Unlike Moser’s method – which
can be applied, as in [McDP, Pf. of Prop. 2.1.C], also when I is not necessarily integrable outside
neighborhoods of the base points x1, . . . ,xk – here we do rely on the integrability of I on the whole M, as
we use methods of complex geometry.

Proof of Proposition 5.13:
The argument below uses a result based on an idea of Demailly and published in [OV, Thm. 4.1] and,

moreover, mimics the idea of its proof.
Since the cohomology class α̃r̄ ∈ H2(M̃I,x;R) is Kähler, we can pick a symplectic form η̃ that

represents it and that is compatible with Ĩ.
For each i = 1, . . . ,k denote:

Uxi := h
(
B2n(ri + ε)

)
,

U ′
xi

:= h
(
B2n(ri + ε/2)

)
,

Ũxi := h̃i (L(ri + ε)) = Π
−1(Uxi),

Ũ ′
xi

:= h̃i (L(ri)) = Π
−1(U ′

xi
).

Thus, U ′
xi
⊂Uxi , Ũ ′

xi
⊂ Ũxi .

Let δ > 0.
Let E :=

⋃k
i=1 Ei be the union of the exceptional divisors of M̃I,x. Since E is a complex submanifold

of (M̃I,x, Ĩ), by a result of Demailly-Paun [DP, Lem. 2.1], there exists a smooth real-valued function G on
M̃I,x \E so that √

−1∂ ∂̄G >−η̃ (5.5)

and G has logarithmic poles along Ei, i = 1, . . . ,k.
The set Ũxi is biholomorphic to the blow-up of the ball at the origin and ρxi(1,ri)− η̃ is an exact

(1,1)-form on Ũxi . Therefore, by Lemma 5.12,

ρxi(1,ri)− η̃ |Ũxi
=
√
−1∂ ∂̄Fi (5.6)
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for a smooth function Fi : Ũxi → R. Adding, if necessary, a constant to Fi, we may assume without loss of
generality that

Fi < G−2δ on an open neigborhood of Ũxi \Ũ ′
xi
, i = 1, . . . ,k. (5.7)

Since the function G tends to −∞ as its argument converges to E, for any i = 1, . . . ,k there exists a
neighborhood Vxi ⊂U ′

xi
of xi, whose preimage Π−1(Vxi)⊂ Ũ ′

xi
will be denoted by Ṽxi := Π−1(Vxi), so that

G+2δ < Fi on Ṽxi , i = 1, . . . ,k. (5.8)

Define the function K : M̃I,x → R as follows

K := max
δ

{Fi,G}, on Ũxi , i = 1, . . . ,k,

K := G, on M̃I,x \
k⋃

i=1

Ũ ′
xi
.

By (5.7), (5.8) and the properties of the regularized maximum (see Section 5.3), K is a well-defined
smooth function on M̃I,x, equal to Fi on Ṽxi , to G on M̃I,x \

⋃k
i=1Ũ ′

i , and to maxδ{Fi,G} on Ũ ′
xi
\ Ṽxi ,

i = 1, . . . ,k.
Define the smooth 2-form θ̃ on M̃I,x by

θ̃ := η̃ +
√
−1∂ ∂̄K.

The form θ̃ is of type (1,1) with respect to Ĩ. Let us verify that θ̃ is positive – i.e. symplectic. We need
to verify that √

−1∂ ∂̄K >−η̃ everywhere on M̃I,x. (5.9)

Let us verify the latter inequality case by case for the points of Ṽxi , Ũ ′
xi
\Ṽxi , i= 1, . . . ,k, and M̃I,x\

⋃k
i=1Ũ ′

xi
.

Consider first the case of Ṽxi , i = 1, . . . ,k. By (5.6), and since ρxi(1,ri)> 0, we have
√
−1∂ ∂̄Fi =−η̃ +ρxi(1,ri)>−η̃ , on Ũxi , i = 1, . . . ,k, (5.10)

Hence, for the points of Ṽxi ⊂ Ũxi , i = 1, . . . ,k,
√
−1∂ ∂̄K =

√
−1∂ ∂̄Fi >−η̃ ,

meaning that the inequality (5.9) is satisfied in this case.
For the points of Ũ ′

xi
\Ṽxi , i = 1, . . . ,k, we have

√
−1∂ ∂̄Fi >−η̃

by (5.10), and √
−1∂ ∂̄G >−η̃

by (5.5). Hence, for such points
√
−1∂ ∂̄K =

√
−1∂ ∂̄ max

δ

{Fi,G}>−η̃ ,
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by the third property of the regularized maximum (see Section 5.3). Thus, the inequality (5.9) is satisfied
in this case too.

Finally, for the points of M̃I,x \
⋃k

i=1Ũ ′
xi

,
√
−1∂ ∂̄G >−η̃

by (5.5). Hence, √
−1∂ ∂̄K =

√
−1∂ ∂̄G >−η̃ ,

meaning that the inequality (5.9) is satisfied also in this case.
This finishes the verification of (5.9).
We have shown that θ̃ is a positive (1,1)-form with respect to Ĩ, which means that it is compatible

with Ĩ. It is cohomologous to η̃ , meaning that it represents the cohomology class α̃r̄. By (5.6),

θ̃ = η̃ +
√
−1∂ ∂̄K = η̃ +

√
−1∂ ∂̄Fi = ρxi(1,ri) on Ṽxi , i = 1, . . . ,k.

This finishes the proof of the proposition.

Recall that for each κ > 0 we define

Rκ : R2n → R2n, Rκ(x) := κx.

The map Rκ induces a diffeomorphism of L⊂ Cn ×CPn−1 that will be denoted by R̃κ :

R̃κ : L→ L.

For κ ∈ (0,1], denote by h◦Rκ the holomorphic embedding

h◦Rκ :=
⊔k

i=1 hi ◦Rκ :
⊔k

i=1 B2n(ri)→ (M, I).

For each i = 1, . . . ,k and each 0 < κ ≤ 1 denote

Uxi,κ := hi ◦Rκ

(
B2n (ri + ε)

)
= hi

(
B2n (κ (ri + ε))

)
.

The following proposition describes the exact version of the symplectic blow-down operation that we
need for our purposes.

Proposition 5.15
Let α ∈ H2(M;R). Let 0 < κ ≤ 1, c1, . . . ,ck > 0.
Assume that the cohomology class α̃r̄ ∈ H2(M̃I,x;R) is represented by a symplectic form θ̃ coincides

with ρxi(ci,ri) on the neighborhood Π−1(Uxi,κ) of Ei, i = 1, . . . ,k.
Then there exists a symplectic form η

κ,θ̃
on M with the following properties:

• [η
κ,θ̃

] = α ,

• If θ̃ is compatible with Ĩ, then η
κ,θ̃

is compatible with I; if I′ is a complex structure on M coinciding

with I on
⋃k

i=1Uxi,κ and such that θ̃ tames Ĩ′, then η
κ,θ̃

tames I′.
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• The embedding h ◦Rκ :
⊔k

i=1 B2n(ri)→ M is symplectic with respect to η
κ,θ̃

(and holomorphic
with respect to I).

• η
κ,θ̃

depends smoothly on κ .

Proof of Proposition 5.15:
Assume κ > 0 is sufficiently small so that θ̃ = ρxi(ci,ri) on Π−1(Uxi,κ) for all i = 1, . . . ,k. Then

R̃∗
κ ◦ h̃∗i θ̃ = ρ(κci,ri) on L(ri + ε) for all i = 1, . . . ,k.

For each i = 1, . . . ,k we can use Proposition 5.11 in order to construct a form ρκci on B2n(ri + ε),
depending smoothly on κ , that equals ω0 on a neighborhood of B2n(ri), and (pr1)∗ρ(κci,ri) on a
neighborhood of ∂B2n(ri + ε). Then the form (hi)∗ρκci is defined on Uxi,κ and coincides with Π∗θ̃ =
Π∗ (ρxi(κci,ri)) near ∂Uxi,κ .

Consequently, we can define a 2-form η
κ,θ̃

on M by setting it equal to Π∗θ̃ outside
⋃k

i=1Uxi,κ and
to (hi)∗ρκci on each Uxi,κ , i = 1, . . . ,k. One easily checks that η

κ,θ̃
is symplectic and that the bulleted

properties in the proposition are satisfied.

The following proposition is a version of the symplectic blow-up construction – cf. e.g. [McDP],
[McDS].

Proposition 5.16
Assume that η is a symplectic form on M such that the embedding h is symplectic with respect to η

and η is compatible with I on the image of h.
Then for any sufficiently small c > 0 there exists a symplectic form θ̃c on M̃I,x with the following

properties:

1. θ̃c = ρxi(c,ri) on Π−1 (hi (B(ri))), i = 1, . . . ,k,

2. Π∗θ̃c = η outside
⊔k

i=1 h
(
B2n(ri + ε)

)
,

3. θ̃c depends smoothly on c,

4. If η is compatible with, respectively tames, I on the whole M, then θ̃c is compatible with, respectively
tames, Ĩ on the whole M̃I,x.

5. [θ̃c] = Π∗[η ]−π ∑
k
i=1 r2

i ei.

Proof of Proposition 5.16:
Using Proposition 5.10 for each B2n(ri), i = 1, . . . ,k, for any sufficiently small c > 0 we can construct

a form θ̃c on M̃I,x with properties 1-4. Properties 1 and 2 imply that θ̃c is a symplectic form satisfying
also property 5. This finishes the proof.

Proof of Proposition 5.7:
Let α := [ω] ∈ H2(M;R).
Consider a triple (I,x,h) ∈ TriplesC0

, where x = (x1, . . . ,xk). By Definition 5.6, the cohomology class
α̃r̄ ∈ H2(M̃I,x;R) is Kähler with respect to I. Hence, by Proposition 5.13, there exists a symplectic form
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θ̃ on M̃I,x which is compatible with Ĩ, represents α̃r̄, and equals to ρxi(1,ri) on a neighborhood of Ei for
each i = 1, . . . ,k. Consequently, Proposition 5.15 implies that for any sufficiently small κ > 0 there exists
a symplectic form η

κ,θ̃
on M with the following properties:

• [η
κ,θ̃

] = α ,

• η
κ,θ̃

is compatible with I,

• h◦Rκ :
⊔k

i=1 B2n(ri)→ M is symplectic with respect to η
κ,θ̃

(and holomorphic with respect to I),

• η
κ,θ̃

depends smoothly on κ .

By Definition 5.6, there exists φ ∈ Diff0(M) such that φ ∗I is compatible with ω . Then φ ∗η
κ,θ̃

and
ω are cohomologous symplectic forms compatible with φ ∗I. The linear family of 2-forms connecting
φ ∗η

κ,θ̃
and ω is then a family of cohomologous symplectic forms. Hence, by Moser’s theorem [Mos],

φ ∗η
κ,θ̃

lies in the Diff0(M)-orbit of ω , and consequently so does η
κ,θ̃

. Thus, for any sufficiently small
κ > 0 we have

(η
κ,θ̃

,h◦Rκ) ∈ PairsC0 .

Define the map
Φ : TriplesC0

→ PairsC0

by
Φ({I,x,h}) :=

{
η

κ,θ̃
,h◦Rκ

}
.

We need to show that the map Φ is well-defined and has the required properties.

Φ is well-defined:
Let us first show that

{
η

κ,θ̃
,h◦Rκ

}
does not depend on the choice of a sufficiently small κ > 0 (for

fixed θ̃ ). Given such 0 < κ1 < κ2, we have a smooth family of pairs (η
κ,θ̃

,h◦Rκ), κ ∈ [κ1,κ2], lying in

PairsC0 . By Proposition 5.5, this family lies in the same Diff0(M)-orbit on PairsC0 . Thus,
{

η
κ,θ̃

,h◦Rκ

}
does not depend on the choice of κ .

Let us verify that
{

η
κ,θ̃

,h◦Rκ

}
does not depend on the choice of θ̃ . Assume that θ̃ ′ is an-

other symplectic form which is compatible with Ĩ, represents α̃r̄, and equals ρxi(1,ri) on a neigh-
borhood of Ei for each i = 1, . . . ,k. Pick a sufficiently small κ > 0 so that θ̃ = θ̃ ′ = ρxi(ci,ri) on
Π−1

(
hi
(
B2n (κ (ri + ε))

))
. Then η

κ,θ̃
and η

κ,θ̃ ′ are cohomologous symplectic forms compatible with ω

and coinciding on hi
(
B2n (κ (ri + ε))

)
. By a relative version of Moser’s theorem (see Proposition A.3,

part I), there exists φ ∈ Diff0(M) that fixes hi
(
B2n (κ (ri + ε))

)
pointwise (thus mapping h◦Rκ to itself)

and maps η
κ,θ̃

to η
κ,θ̃ ′ . Thus,

{
η

κ,θ̃
,h◦Rκ

}
does not depend on the choice of θ̃ .

Finally, a direct check shows that Φ({I,x,h}) does not depend on a representative (I,x,h) of {I,x,h}∈
TriplesC0

: acting by φ ∈ Diff0(M) on (I,x,h) and applying the previous construction to the resulting

element of TriplesC0
we get a pair in PairsC0 obtained from

(
η

κ,θ̃
,h◦Rκ

)
by the action of the same φ .
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(Here we identify the complex blow-ups of (M, I) at x1, . . . ,xk and of (M,φ∗I) at φ(x1), . . . ,φ(xk) by the
diffeomorphism induced by φ .)

Thus, we have shown that Φ is well-defined.

Φ is continuous:
By Proposition 5.3, the space PairsC0 is discrete. Thus, showing that Φ : TriplesC0

→ PairsC0

is continuous is equivalent to showing that the preimage of a point in PairsC0 under Φ is open in
TriplesC0

, or, in other words, that for any (I′,x′,h′)∈ TriplesC0
sufficiently close to (I,x,h) its Diff0(M)-

orbit {(I′,x′,h′)} ∈ TriplesC0
is mapped by Φ to the same point in PairsC0 as {(I,x,h)}.

Given (I′,x′,h′) ∈ TriplesC0
, one easily constructs φ ∈ Diff0(M) so that

• φ sends x′ into x,

• φ ◦h′ coincides with h near each xi, i = 1, . . . ,k.

If h and h′, and x and x′, are sufficiently C∞-close, then φ can be chosen to be close to the identity
and therefore it will send (I′,x′,h′) into a triple close to (I,x,h). Thus, without loss of generality we
may replace (I′,x′,h′) by a triple (I′,x,h′) that is close to (I,x,h) and satisfies h◦Rκ = h′ ◦Rκ for any
sufficiently small κ > 0. In particular, for any such κ the complex structures I and I′ coincide on each
hi
(
B2n (κ (ri + ε))

)
, i = 1, . . . ,k.

Arguing as above, we can construct a symplectic form θ̃ on M̃I,x = M̃I′,x which is compatible
with Ĩ′, represents α̃r̄, and for any sufficiently small κ > 0 equals to ρxi(1,ri) on the neighborhood
Π−1

(
hi
(
B2n (κ (ri + ε))

))
of Ei for each i = 1, . . . ,k. Consequently, for any sufficiently small κ > 0 we

have a well-defined symplectic form η
κ,θ̃ ′ on M. This form is compatible with I′, represents the class α

and coincides with η
κ,θ̃

on each hi
(
B2n (κ (ri + ε))

)
, i = 1, . . . ,k.

Assume that I′ is sufficiently close to I so that it is tamed by the form η
κ,θ̃

(which is compatible
with I). Then η

κ,θ̃
and η

κ,θ̃ ′ are cohomologous symplectic forms on M that both tame I′ and coincide
on each hi

(
B2n (κ (ri + ε))

)
, i = 1, . . . ,k. A relative version of Moser’s theorem (see Proposition A.3,

part I) implies then that there exists ϕ ∈ Diff0(M) that maps η
κ,θ̃ ′ into η

κ,θ̃
and fixes pointwise each

hi
(
B2n (κ (ri + ε))

)
, i = 1, . . . ,k. Hence, ϕ maps

(
η

κ,θ̃ ′ ,h′ ◦Rκ

)
∈ PairsC0 into

(
η

κ,θ̃
,h◦Rκ

)
.

Thus, for any (I′,x′,h′) ∈ TriplesC0
sufficiently close to (I,x,h), its Diff0(M)-orbit

{I′,x′,h′} ∈ TriplesC0
is mapped by Φ to the same point in PairsC0 as {I,x,h} ∈ TriplesC0

. This
finishes the proof of the claim that Φ is continuous.

Φ is surjective:
The proof uses the well-known fact (see e.g. [McDP]) that the symplectic blow-down is an “inverse"

of the symplectic blow-up, up to an isotopy.
Namely, let (η , f ) ∈ PairsC0 , where f =

⊔k
i=1 fi :

⊔k
i=1 B2n(ri)→ (M,η) is a symplectic embedding

holomorphic with respect to a complex structure I on M compatible with η . Let us show that {η , f} ∈
PairsC0 lies in the image of Φ.

Set
xi := fi(0), i = 1, . . . ,k,
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x := (x1, . . . ,xk).

By Proposition 5.16, the cohomology class α̃r̄ ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ. Thus, by
Definition 5.6, (I,x, f ) ∈ TriplesC0

. Moreover, by Proposition 5.16, the class α̃r̄ can be represented, for a
sufficiently small c > 0, by a symplectic form θ̃c on M̃I,x with the following properties:

• θ̃c = ρxi(c,ri) on Π−1 ( fi (B(ri))), i = 1, . . . ,k,

• [θ̃c] = Π∗[η ]−π ∑
k
i=1 r2

i ei,

• θ̃c is compatible with Ĩ.

Consequently, Proposition 5.15 implies that for κ = 1 there exists a symplectic form η1(θ̃c) on M
with the following properties:

• [η1(θ̃c)] = α ,

• η1(θ̃c) is compatible with I,

• The f ◦R1 = f :
⊔k

i=1 B2n(ri)→ M is symplectic with respect to η1(θ̃c) (and holomorphic with
respect to I).

This yields that
1. α̃r̄ ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ. Thus, by Definition 5.6, (I,x, f ) ∈ TriplesC0

.

2. η1(θ̃c) coincides with η on each fi
(
B2n (κri)

)
, i = 1, . . . ,k.

A relative version of Moser’s theorem (see Proposition A.3, part I) implies then that there exists
ψ ∈ Diff0(M) that maps η1(θ̃c) into η and fixes pointwise each each fi

(
B2n (κri)

)
, i = 1, . . . ,k. Hence,

ψ

(
η1

(
θ̃c

)
, f
)
= (η , f ).

Thus,
Φ({I,x, f}) =

{
η1

(
θ̃c

)
, f
}
= {η , f} ∈ PairsC0 .

This shows that {η , f} ∈ PairsC0 lies in the image of Φ. Hence, Φ is surjective.
We have shown that Φ is well-defined, continuous and surjective. By construction, it clearly satisfies

the properties 1 and 2 listed in the statement of Proposition 5.7. This finishes the proof of Proposition 5.7.

The tools developed above allow us also to prove the following existence result for tame embeddings
of balls, which is an analogue of part (I) of Theorem 3.2.

Proposition 5.17
The set

⊔k
i=1 B2n(ri) admits a tame embedding into (M,ω) if and only if for some I ∈ CK(M,ω),

tamed by ω , and some x ∈ M̂k, the class Π∗[ω]−π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R), can be represented by a form
taming Ĩ and equal to ρxi(ci,ri), for some ci > 0, near each Ei, i = 1, . . . ,k.

More precisely, given I ∈ CK(M,ω), tamed by ω , the following conditions are equivalent:
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• There exists x = (x1, . . . ,xk) ∈ M̂k so that the cohomology class Π∗[ω]−π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R)
can be represented by a form taming Ĩ and equal to ρxi(ci,ri), for some ci > 0, near each Ei,
i = 1, . . . ,k.

• There exist a tame embedding f :
⊔k

i=1 B2n(ri)→ (M,ω) and φ ∈Diff0(M), so that f is holomorphic
with respect to the complex structure φ ∗I on M tamed by ω .

Proof of Proposition 5.17:
Assume that for some I ∈ CK(M,ω), tamed by ω , and some x ∈ M̂k the cohomology class Π∗[ω]−

π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R) can be represented by a form taming Ĩ and equal to ρxi(ci,ri), for some ci > 0,
near each Ei = Π−1(xi), i = 1, . . . ,k. Then one can deduce from Proposition 5.15 that there exist a
symplectic form η on M, cohomologous to ω and taming I, and an embedding g :

⊔k
i=1 B2n(ri)→ M

symplectic with respect to η and holomorphic with respect to I. The linear family of closed 2-forms
connecting ω and η is formed by cohomologous forms each of which tames I and is therefore symplectic.
Therefore, by Moser’s theorem [Mos], ω = φ ∗η for some φ ∈ Diff0(M). The embedding f := φ−1 ◦g :⊔k

i=1 B2n(ri) → (M,ω) is symplectic with respect to ω and holomorphic with respect to the complex
structure φ ∗I on M tamed by ω , meaning that f is tame. This proves one of the implications in the
required equivalence.

Let us now prove the opposite implication.
Assume that f =

⊔k
i=1 fi :

⊔k
i=1 B2n(ri) → (M,ω) is a symplectic embedding holomorphic with

respect to the complex structure J := φ ∗I, φ ∈ Diff0(M), tamed by ω . Set yi := fi(0), i = 1, . . . ,k, and
y := (y1, . . . ,yk).

By Proposition 5.16, there exists a symplectic form θ̃ on M̃J,y with the following properties:

1. θ̃ = ρyi(c,ri), for a sufficiently small c > 0, on a neighborhood of the exceptional divisor Π−1(yi)⊂
M̃J,y, i = 1, . . . ,k,

2. θ̃ tames J̃,

3. [θ̃ ] = Π∗[ω]−π ∑
k
i=1 r2

i ei ∈ H2(M̃J,y;R).
Set xi := φ(yi), i= 1, . . . ,k, and x :=(x1, . . . ,xk). The diffeomorphism φ : M →M induces a diffeomor-

phism M̃J,y → M̃I,x identifying the form θ̃ on M̃J,y with a form on M̃I,x taming Ĩ, equal to ρxi(c,ri) near each
Ei = Π−1(xi)⊂ M̃I,x, i = 1, . . . ,k, and lying in the cohomology class Π∗[ω]−π ∑

k
i=1 r2

i ei ∈ H2(M̃I,x;R).
This finishes the proof of the opposite implication and of the proposition.

5.6 Connectedness of TriplesC0

Let I be a Kähler-type complex structure on M. Equip M̂k and M̂k ×M with the product complex
structures induced by I.

Denote by Ξ ⊂ M̂k ×M the following incidence variety:

Ξ :=
{
((x1, . . . ,xk) ,x) ∈ M̂k ×M

∣∣ x = xi for some i = 1, . . . ,k
}
.
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It is a smooth complex submanifold of M̂k ×M. Denote by M the complex blow-up of M̂k ×M along Ξ.
It is a complex manifold that projects holomorphically to M̂k ×M and consequently to M̂k. Denote the
latter projection by π : M→ M̂k. This projection defines a complex analytic family of complex manifolds
equipped with Kähler-type complex structures.

The fiber of π over each x = (x1, . . . ,xk) ∈ M̂k can be canonically identified with the complex blow-
up M̃I,x of (M, I) at x1, . . . ,xk. The holonomy of the Gauss-Manin connection on π is trivial and the
homology/cohomology groups of all the fibers of π are then identified with the homology/cohomology
groups of the complex blow-up of M at k distinct ordered points (the identification does not depend on
the choice of the points, since the homology/cohomology groups of the complex blow-ups for different
choices can be canonically identified). The identifications preserve the Hodge decompositions and, in
particular, cohomology classes of type (1,1) of one fiber are identified with the (1,1)-classes of another
fiber.

Proposition 5.18
Assume that β is a (1,1)-cohomology class of the complex blow-up of (M, I) at k points.
Denote by Bβ ⊂ M̂k the set of all x ∈ M̂k such that β ∈ H1,1

Ĩ
(M̃I,x;R) is Kähler.

Then Bβ is connected.

Proof of Proposition 5.18:
If Bβ is empty, the claim is trivial. Assume it is non-empty. Since β ∈ H1,1

Ĩ
(M̃I,x;R) for all x ∈ M̂k,

the Kodaira-Spencer stability theorem implies (see Proposition A.2) that the set Bβ is open.
A theorem of Demailly-Paun [DP, Thm. 0.9] about the Kähler cones of the fibers of a complex

analytic deformation family implies in our situation that there exists a countable union
⋃

ν Sν of proper
analytic subsets Sν ⫋ M̂k such that the Kähler cones of the fibers π−1(x) coincide for all x ∈ M̂k \

⋃
ν Sν

under our identifications of the cohomologies of the fibers.
Since the set Bβ ⊂ M̂k is open, it intersects M̂k \

⋃
ν Sν . Therefore β ∈ H1,1

Ĩ
(M̃I,x;R) is Kähler for all

x ∈ M̂k \
⋃

ν Sν , meaning that M̂k \
⋃

ν Sν ⊂Bβ . Being the complement of a countable union of proper
analytic subsets of a connected complex manifold, the set M̂k \

⋃
ν Sν is connected and dense in M̂k.

Hence, the set Bβ is connected too.

Corollary 5.19
The fibers of the projection pr : K(r̄)→ CK(M) are connected.
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Proof of Corollary 5.19:
For each I ∈ Diff0(M,ω) · Cmpt(M,ω) and each x ∈ M̂k the cohomology class α̃r̄ = Π∗[ω]−

π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R) is of type (1,1). The image of pr lies in Diff0(M,ω) ·Cmpt(M,ω) and the
fiber of pr over I ∈ Impr is the set of all x ∈ M̂k such that the (1,1)-class α̃r̄ is Kähler. By Proposition
5.18, applied to β = α̃r̄, this fiber is connected.

Proposition 5.20
Assume I is a complex structure on M, x ∈ M, r > 0.
Then the space of holomorphic embeddings h : B2n(r)→ (M, I), such that h(0) = x, is path-connected.

Proof of Proposition 5.20:
Assume h : B2n(r)→ (M, I), h(0) = x, is a holomorphic embedding. Let g : B2n(r)→ (M, I), g(0) = x,

be another holomorphic embedding. We want to show that g can be connected to h by a smooth path of
holomorphic embeddings B2n(r)→ (M, I) mapping 0 to x.

We can assume without loss of generality that Img ⊂ Imh. Indeed, for a sufficiently small κ > 0 we
have Im(g◦Rκ)⊂ Imh and g = g◦R1 can be connected to g◦Rκ by the family {g◦Rt}t∈[κ,1].

Assuming Img ⊂ Imh, in order to connect g to h by a smooth path of holomorphic embeddings
B2n(r) → (M, I) mapping 0 to x it suffices to show that the holomorphic embedding f := h−1 ◦ g :
B2n(r) → B2n(r), h−1 ◦ g(0) = 0, can be connected to the identity by a smooth path of holomorphic
embeddings B2n(r)→ B2n(r) mapping 0 to 0. The latter result is standard and is proved by a version of
the Alexander trick – see Proposition A.4, part II.

This finishes the proof of the proposition.

Proof of Proposition 5.8:
The space TriplesC0

= TriplesC0
/Diff0(M) is connected if only if the space TriplesC0

is connected.
The projection (I,x,h) 7→ (I,x) defines a surjective continuous map TriplesC0

→KC0(r̄). In view of
Proposition 5.20, the fibers of this map are connected. Hence, TriplesC0

is connected if and only KC0(r̄) is
connected. By Corollary 5.19, the fibers of the projection pr : KC0(r̄)→ C0 are connected. Thus, KC0(r̄)
is connected if and only if pr(KC0(r̄)) is connected. The set pr(KC0(r̄)) is connected if and only if the
set KC0(r̄) = pr(KC0(r̄)/Diff0(M) is connected. Summing up, we see that TriplesC0

is connected if and
only if KC0(r̄) is connected. This finishes the proof of the proposition.

6 The case of complex projective spaces and their products

As above, we denote by Ist the standard complex structure on CPn and by ωFS, or by ωFS,n, the standard
Fubini-Study symplectic form on CPn normalized so that

∫
CP1 ωFS = π . Let h ∈ H2(CPn;Z) be the

generator of H2(CPn;Z) so that [ωFS] = πh.
Let us prove Theorem 3.5. For convenience, we restate it here.
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Theorem 6.1 (= Theorem 3.5)
Consider the manifold M := CPn1 × . . .×CPnm , n1, . . . ,nm > 0, n1 + . . .+ nm =: n, endowed with

the symplectic form ωc := c1ωFS,n1 ⊕ . . .⊕ cmωFS,nm , c := (c1, . . . ,cm) ∈ (R>0)
m. Let I be the complex

structure on M which is the product of the standard complex structures on the factors.
Let l1, . . . , lm ∈ Z>0 so that [l1 : . . . : lm] = [c1 : . . . : cm] ∈ RPm. Let

k :=
(n1 + . . .nm)!
n1! · . . . ·nm!

ln1
1 · . . . · lnm

m .

Let Σ ⊂ (M, I) be a proper (possibly empty) complex submanifold. If M = CPn1 ×CP1, we also allow
Σ = (CPn1−1 ×CP1)∪ (CPn1 ×pt).

Then Kähler-type embeddings of disjoint unions of k equal balls into (M \Σ,ωc) are unobstructed.
More precisely, if kVol(B2n(r),ω0) < Vol(M,ω), then for each proper (possibly empty) complex

submanifold Σ ⊂ (M, I), there exists an [I]-Kähler-type embedding of
⊔k

i=1 B2n(r) into (M,ω) which is
holomorphic with respect to a complex structure on M that is compatible with ω and isotopic to I by an
isotopy preserving Σ (as a set).

Proof of Theorem 6.1 (= Theorem 3.5):
The proof mimics the proof of [McDP, Thm. 1.5.A].
Namely, as it is shown in [McDP, Pf. of Thm. 1.5.A], there exist x1, . . . ,xk ∈M, x := (x1, . . . ,xk)∈ M̂k,

and a holomorphic map F : M̃I,x → (CPn−1, Ist) so that

• F induces a biholomorphism on each exceptional divisor,

• Π∗[ω]−F∗[ωFS,n−1] ∈ H2(M̃I,x;R) is a linear combination of the cohomology classes e1, . . . ,ek
Poincaré-dual to the fundamental homology classes of the exceptional divisors of M̃I,x. Here
Π : M̃I,x → M is the blow-up projection, as before.

Let c > 0. A direct check using the above-mentioned properties of F shows that the form ω̃c :=
(1+ c)−1(Π∗ω + cF∗ωFS,n−1) is a symplectic form on M̃I,x compatible with Ĩ and representing the
cohomology class Π∗[ω]− π ∑

k
i=1(1+ c)−1cei ∈ H2(M̃I,x;R). Therefore, by part (I) of Theorem 3.2

(=Theorem 5.9), for rc :=
√
(1+ c)−1c, there exists a symplectic embedding

⋃k
i=1 B(rc)→ (M \Σ,ω)

and an isotopy {φt}0≤t≤1 ⊂ Diff0(M), φ0 = Id, φt(Σ) = Σ for all t ∈ [0,1], so that f is holomorphic with
respect to the complex structure φ ∗

1 I which is compatible with ω . As it is shown in [McDP, Pf. of Thm.
1.5.A], as c →+∞, the symplectic volume of

⋃k
i=1 B(rc) tends from below to the symplectic volume of

(M,ω). This readily yields the claim of the theorem.

Let us know consider the case M = CPn.
The following result is classical – see Remark 6.3 for the references.

Theorem 6.2
(I) Any Kähler-type complex structure on CPn can be identified with Ist by a diffeomorphism lying in
DiffH(CPn).
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(II) Any two Kähler-type complex structures on CPn lying in the same component of CK(CPn) can be
mapped into each other by an element of Diff0(CPn).

Remark 6.3
1. Part (I) of Theorem 6.2 is due to Hirzebruch and Kodaira [HiK] for odd n and to Yau [Yau1] for
even n – see [Tos] for an exposition and a proof. (The result in [Tos] does not state explicitly that the
diffeomorphism in part (I) of the theorem acts trivially on homology but this can be easily deduced from
the proof there.)

2. It is not known whether each complex structure on CPn, n ≥ 3, is of Kähler type. For n = 1 this is
obviously true. For n = 2 this is true by a deep result of Yau [Yau1].

3. Part (II) of the theorem implies that DiffH(CPn) = Diff0(CPn) if and only if CK(CPn) is connected.
It is known that DiffH(CPn) ̸= Diff0(CPn) for n = 3 [KrS, Thm. 1.2] and n = 4 [Bru, Rem. II.11]. Thus,
CK(CPn), n = 3,4, has more than one connected component. We do not know whether the same facts
hold for n = 2 and n > 4.

4. Part (II) of Theorem 6.2 follows from a theorem of Fröhlicher and Nijenhuis [FroN], cf. [KoS1, Thm.
6.3].

Corollary 6.4
Each connected component of the space Teich(CPn) is a point. The DiffH(CPn)-action on Teich(CPn)

is transitive.

Corollary 6.5
The group SympH(CPn,ωFS)⊂ DiffH(CPn) acts transitively on the set of connected components of

Teich(CPn) compatible with ωFS.

Proof of Corollary 6.5:
Assume J is a complex structure on CPn compatible with ωFS. Then, by part (I) of Theorem 6.2,

there exists φ ∈ DiffH(CPn) such that φ ∗J = Ist . Then φ ∗ωFS is a symplectic form compatible with Ist

and cohomologous to ωFS. Therefore the straight path in the space of 2-forms connecting these forms is
formed by cohomologous symplectic forms, and consequently, by Moser’s theorem [Mos], there exists
ψ ∈ Diff0(CPn) such that ψ∗φ ∗ωFS = ωFS. Then φψ ∈ SympH(CPn,ωFS) and (φψ)∗J = ψ∗Ist lies in
the Diff0(CPn)-orbit of Ist . This means that the connected component of Teich(CPn) containing [J]
is mapped under the action of φψ ∈ SympH(CPn,ωFS) into the connected component of Teich(CPn)
containing [Ist ]. This yields the proposition.

We are ready to prove Theorem 3.7 – let us first recall it here.

Theorem 6.6 (=Theorem 3.7)
A. For each l ∈ Z>0, Kähler-type embeddings of disjoint unions of ln equal balls into (CPn,ωFS) are
unobstructed.
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More precisely, if lnVol(B2n(r),ω0)< Vol(CPn,ωFS), then for any complex structure J on CPn com-
patible with ωFS (and, in particular, for the standard complex structure Ist) and for each proper (possibly
empty) complex submanifold Σ ⊂ (CPn,J), there exists a [J]-Kähler-type embedding of

⊔ln

i=1 B2n(r) into
(CPn,ωFS) which is holomorphic with respect to a complex structure on CPn that is compatible with ωFS

and isotopic to J by an isotopy preserving Σ (as a set).

B. The group SympH(CPn,ωFS) acts transitively on the set of connected components of CK(CPn)
compatible with ωFS.

C. For any k ∈ Z>0 and r1, . . . ,rk > 0, any two Kähler-type embeddings
⊔k

i=1 B2n(ri)→ (CPn,ωFS) (if
they exist!) lie in the same orbit of the SympH(CPn,ωFS)-action.

They lie in the same orbit of the Symp(CPn,ωFS)∩Diff0(CPn)-action if and only if they favor a
common connected component of CK(CPn). In the latter case there exists [I] ∈ Teich(CPn,ωFS) such
that both embeddings are of [I]-Kähler type.

Proof of Theorem 6.6 (=Theorem 3.7):
As we already explained in Section 3.2, we only need to prove parts B and C.
Part B is exactly Corollary 6.5 that we have just proved.
Let us prove part C. By Corollary 6.4, for each connected component C0 of CK(CPn) the correspond-

ing connected component TeichC0(CPn) of Teich(CPn) is just a point. Consequently, for any r̄ the set
KC0(r̄)⊂ TeichC0(CPn) is connected. Now applying Theorem 3.2 along with part B of this theorem we
get part C.

This finishes the proof.

Now consider the case of CP2. Similarly to our previous notation, we write (ĈP2)k for the set of
all ordered k-tuples of pairwise distinct points in CP2. As before, given x = (x1, . . . ,xk) ∈ (ĈP2)k, the
manifold C̃P2

Ist ,x is the complex blow-up of (CP2, Ist) at x1, . . . ,xk. Given r̄ = (r1, . . . ,rk) ∈ (R>0)
k and

J ∈ CK(CP2), set α := [ω] and

α̃r̄ := Π
∗[ω]−π

k

∑
i=1

r2
i ei ∈ H2(C̃P2

J,x;R).

Definition 6.7
Assume that k ∈ Z, 1 ≤ k ≤ 8.
We say that k points in CP2 are in general position if

(i) no three points are on a line;

(ii) no six points are on a conic;

(iii) no cubic passes through the points with one of the points being a singular point.

Proposition 6.8
Let 1 ≤ k ≤ 8.
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Then the set of tuples x= (x1, . . . ,xk)∈ (ĈP2)k such that x1, . . . ,xk are in general position is connected
and dense in (ĈP2)k.

Proof of Proposition 6.8:
Consider the product complex structure on (ĈP2)k ⊂ (CP2)k. In view of Definition 6.7, the k-tuples

(x1, . . . ,xk) ∈ (ĈP2)k such that x1, . . . ,xk are not in general position lie in a proper analytic subset of
(ĈP2)k. This means that the set of k-tuples (x1, . . . ,xk) ∈ (ĈP2)k such that x1, . . . ,xk are in general
position contains the complement of a proper analytic subset of (ĈP2)k. Thus, it is connected (because
(ĈP2)k itself is connected) and dense (and open) in (ĈP2)k.

Proposition 6.9
Assume that 1 ≤ k ≤ 8. Let r̄ = (r1, . . . ,rk) ∈ (R>0)

k, r1 ≥ r2 ≥ . . . ≥ rk. Let C0 be the connected
component of CK(CP2) containing Ist .

Then for any x = (x1, . . . ,xk) ∈ (ĈP2)k such that x1, . . . ,xk ∈ CP2 are in general position, the class
α̃r̄ ∈ H2(C̃P2

Ist ,x;R) is Kähler with respect to Ĩst if and only if the numbers r1, . . . ,rk satisfy the following
inequalities (listed in [McDP, Cor. 1.3G]):

(v) ∑
k
i=1 r4

i < 1,

(c1) r2
1 + r2

2 < 1, if 2 ≤ k ≤ 8,

(c2) r2
1 + . . .+ r2

5 < 2, if 5 ≤ k ≤ 8,

(c3) 2r2
1 +∑

7
i=2 r2

i < 3, if 7 ≤ k ≤ 8,

(c4) 2r2
1 +2r2

2 +2r2
3 + r2

4 + . . .+ r2
8 < 4, if k = 8,

(c5) 2∑
6
i=1 r2

i + r2
7 + r2

8 < 5, if k = 8,

(c6) 3r2
1 +2∑

8
i=2 r2

i < 6, if k = 8.

Proof of Proposition 6.9:
If 1 ≤ k ≤ 8 and the points x1, . . . ,xk ∈ CP2 are in general position (such points exist by Proposition

6.8), then (C̃P2
Ist ,x, Ĩst), for x = (x1, . . . ,xk), is a del Pezzo surface (see e.g. [Dol, Thm. 8.1.25]). As such,

it is a good generic surface in the sense of [FriM, Def. 2.1] (see [FriM, Rem. 2.9]). The Kähler cone of
(C̃P2

Ist ,x, Ĩst) is the cone of classes in H2(C̃P2
Ist ,x;R) that have a positive square and evaluate positively

on the homology classes of holomorphically embedded 2-spheres with self-intersection index equal to
−1 and on the class 3[CP1]−∑

k
i=1[Ei] ∈ H2(C̃P2

Ist ,x;Z) [FriM]. Together with the information on the
homology classes of holomorphically embedded 2-spheres with self-intersection index equal to −1 given
in [Dmz], this yields that α̃r̄ is Kähler with respect to Ĩst if and only if the numbers r1, . . . ,rk satisfy the
inequalities (v), (c1)-(c6) – see [McDP, Cor. 1.3G].

This finishes the proof of the proposition.

Let us recall the following result of Gromov.
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Proposition 6.10 [Gro]
The group Symp(CP2,ωFS) is homotopy equivalent to PU(3) and, in particular, connected.

Recall Proposition 3.12:

Proposition 6.11 (=Proposition 3.12)
There is only one connected component of CK(CP2) compatible with ωFS – it is the connected

component of CK(CP2) containing Ist . Any two complex structures in that connected component are
isotopic.

Proof of Proposition 6.11 (= Proposition 3.12):
The proposition follows immediately from Corollary 6.5, Proposition 6.10. and part (II) of Theorem

6.2.

Now we are ready to prove Theorem 3.15 – let us recall it here.

Theorem 6.12 (=Theorem 3.15)
A. Assume that 1 ≤ k ≤ 8 and r1 ≥ r2 ≥ . . .≥ rk > 0.

Then for any proper (possibly empty) complex submanifold Σ⊂ (CP2, Ist), any symplectic embedding⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS) is, in fact, of [Ist ]-Kähler type: it is holomorphic with respect to a complex

structure on CP2 that is compatible with ωFS and isotopic to Ist by an isotopy fixing Σ (as a set).
Accordingly, by part A of Theorem 3.14, such a Kähler-type embedding

⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS)

exists if and only if the radii r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) listed in part A of Theorem
3.14.

B. For any proper (possibly empty) complex submanifold Σ ⊂ (CP2, Ist) and any k = l2, l ∈ Z>0, any
symplectic embedding

⊔k
i=1 B4(r)→ (CP2 \Σ,ωFS) is, in fact, of [Ist ]-Kähler type: it is holomorphic

with respect to a complex structure on CP2 that is compatible with ωFS and isotopic to Ist by an isotopy
preserving Σ (as a set).

Accordingly, by part B of Theorem 3.14, such Kähler-type embeddings
⊔k

i=1 B4(r)→ (CP2 \Σ,ωFS)
are unobstructed: they exist if and only if kVol(B4(r),ω0)< Vol(CP2,ωFS).

C. Let Σ ⊂ (CP2,ωFS) be either of the following:

(1) the empty set;

(2) a finite union of closed compact symplectic submanifolds (without boundary) of real dimension 2
whose pairwise intersections (if they exist) are transverse and ω–orthogonal;

(3) a Lagrangian submanifold which is diffeomorphic to either S2 or RP2.
For any k ∈ Z>0 and r1, . . . ,rk > 0, any two Kähler-type embeddings

⊔k
i=1 B4(ri)→ (CP2 \Σ,ωFS)

(if they exist!) lie in the same orbit of the Sympc
0(CP2 \ Σ,ωFS)-action, meaning that the space of

Kähler-type embeddings
⊔k

i=1 B4(ri)→ (CP2 \Σ,ωFS) is connected.
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Proof of Theorem 6.12 (=Theorem 3.15):
As we already explained in Section 3.2, part B of Theorem 3.15 follows from Theorem 3.7 and from

part (II) of Theorem 3.4, while part C of Theorem 3.15 follows directly from part (I) of Theorem 3.4.
Let us prove part A.
Assume f :

⊔k
i=1 B4(ri)→ (CP2,ωFS) is a symplectic embedding. Then, by Theorem 3.14, the radii

r1, . . . ,rk satisfy the conditions (v), (c1)-(c6). Consequently, Proposition 6.9 together with part (I) of
Theorem 3.2 (=Theorem 5.9) yields that there exists an [Ist ]-Kähler-type embedding f ′ :

⊔k
i=1 B4(ri)→

(CP2,ωFS). By part (II) of Theorem 3.4, this implies that f is of [Ist ]-Kähler type too. This finishes the
proof of part A and of the theorem.

7 The case of CP2♯CP2

Let M = CP2♯CP2. As a smooth manifold, M will be identified with the complex blow-up C̃P
2
Ist ,x of

(CP2, Ist) at a point x ∈CP2. Let J1 be the complex structure on M identified in this way with the blow-up

complex structure Ĩst on C̃P
2
Ist ,x.

Denote by E ⊂ M = C̃P
2
Ist ,x the exceptional divisor. Let [CP1] ∈ H2(M;Z) be the homology class

of a projective line CP1 ⊂ M. Denote by h,e ∈ H2(M;Z) the cohomology classes Poincaré-dual to the
homology classes of [CP1] and [E].

Given 0 < λ < π , assume that ωλ is a Kähler form on the complex manifold (M,J1) such that
⟨[ωλ ], [CP1]⟩= π , ⟨[ωλ ], [E]⟩= λ . Thus, [ωλ ] = πh−λe.

Further on in this section we fix
2 ≤ k ≤ 8,

R1 ≥ R2 ≥ . . .≥ Rk−1 > 0,

and set
r1 := R1 ≥ . . .≥ ri−1 := Ri−1 ≥ ri :=

√
λ/π ≥

≥ ri+1 := Ri ≥ . . .≥ rk := Rk−1.

For each (x1, . . . ,xk−1) ∈ M̂k−1 and each complex structure I on M,

• M̃I,x1,...,xk−1 will denote the complex blow-up of (M, I) at x1, . . . ,xk−1.

• Ĩ will denote the lift of I to M̃I,x1,...,xk−1 .

• ΠM : M̃I,x1,...,xk−1 → M denotes the natural projection.

• e1,M, . . . ,ek−1,M ∈ H2(M̃I,x1,...,xk−1 ;R) are the cohomology classes Poincaré-dual to the fundamental
homology classes of the exceptional divisors.

JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 1(1):16–119, 2023 70

https://jamathr.org
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We say that k−1 points x1, . . . ,xk−1 ∈ M are in general position if x1, . . . ,xk−1 ∈ M \E ∼= CP2 \ x
and the k points x1, . . . ,xk−1,x are in general position as points of CP2 (see Definition 6.7).

Proposition 7.1
The set of tuples (x1, . . . ,xk−1) ∈ M̂k−1 such that x1, . . . ,xk−1 are in general position is connected and

dense in M̂k−1.

Proof of Proposition 7.1:
Arguing as in Proposition 6.8, we get that the set of (k−1)-tuples (x1, . . . ,xk−1) ∈ M̂k−1 such that

x1, . . . ,xk are in general position contains the complement of a proper analytic subset of M̂k−1. Thus, it is
connected (since M̂k−1 is connected) and dense (and open) in M̂k−1.

Proposition 7.2
Let x1, . . . ,xk−1 ∈ M be in general position.
Then the cohomology class

Π
∗
M[ωλ ]−π

k−1

∑
i=1

R2
i ei,M ∈ H2(M̃J1,x1,...,xk−1 ;R)

is Kähler with respect to J̃1 if and only if the numbers r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) listed
in Proposition 6.9.

Proof of Proposition 7.2:
Since the points x1, . . . ,xk−1 lie in M \E ∼= CP2 \ x, we can view them as points of CP2. Denote by

ΠCP2 : C̃P2
Ist ,x1,...,xk−1,x →CP2 the blow-up projection and by e1,CP2 , . . . ,ek−1,CP2 ∈H2(C̃P2

Ist ,x1,...,xk−1,x;R)
the cohomology classes Poincaré-dual to the fundamental homology classes of the exceptional divisors.

There exists a natural biholomorphism between (M̃J1,x1,...,xk−1 , J̃1) and (C̃P2
Ist ,x1,...,xk−1,x, Ĩst). Since

[ωλ ] = πh−λe, this biholomorphism identifies the cohomology class

Π
∗
M[ωλ ]−π

k−1

∑
i=1

R2
i ei,M ∈ H2(M̃J1,x1,...,xk−1 ;R)

with the cohomology class

Π
∗
CP2(πh)−λe−π

k−1

∑
i=1

R2
i ei,CP2 ∈ H2(C̃P2

Ist ,x1,...,xk−1,x;R).

(Here e ∈ H2(M̃J1,x1,...,xk−1 ;R) is identified with the cohomology class in C̃P2
Ist ,x1,...,xk−1,x associated to the

exceptional fiber over x). Now the proposition follows from Proposition 6.9.

Now we are ready to prove Theorem 3.18 – let us recall it here.
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Theorem 7.3 (=Theorem 3.18)
Let M = CP2♯CP2 and let ωλ be a Kähler-type form on M as above.
Then the following claims hold:

A. Let 2 ≤ k ≤ 8, R1 ≥ R2 ≥ . . .≥ Rk−1 > 0. Assume that r1 := R1 ≥ . . .≥ ri−1 := Ri−1 ≥ ri :=
√

λ/π ≥
ri+1 := Ri ≥ . . .≥ rk := Rk−1.

Then for any proper (possibly empty) complex submanifold Σ ⊂ (M,J1), the following conditions are
equivalent:

• There exists a [J1]-Kähler-type embedding
⊔k−1

i=1 B4(Ri)→ (M \Σ,ωλ ) holomorphic with respect
to a complex structure on M that is compatible with ωλ and isotopic to J1 by an isotopy preserving
Σ (as a set).

• The numbers r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) in part A of Theorem 3.14.

For r1, . . . ,rk satisfying the inequalities (v), (c1)-(c6) in part A of Theorem 3.14, any symplectic
embedding

⊔k−1
i=1 B4(Ri)→ (M \Σ,ωλ ) is, in fact, of [J1]-Kähler type.

B. For any k ∈ Z>0 and R1, . . . ,Rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(Ri) → (M,ωλ ) (if
they exist!) lie in the same orbit of the Symp0(M,ωλ )-action, meaning that the space of Kähler-type
embeddings

⊔k
i=1 B4(Ri)→ (M,ωλ ) is connected.

Proof of Theorem 7.3 (=Theorem 3.18):
As we already explained in Section 3.3, part B follows from part (I) of Theorem 3.4.
Let us prove part A.
Assume that the numbers r1, . . . ,rk satisfy the conditions (v), (c1)-(c6). Then, by Proposition 7.2,

combined with part (I) of Theorem 3.2, the union
⊔k−1

i=1 B4(ri) admits a Kähler-type embedding into
(M,ωλ ) which is holomorphic with respect to a complex structure on M isotopic to J1 and compatible
with ωλ , meaning that the embedding is of [J1]-Kähler type. By part (II) of Theorem 3.4, this implies that
any symplectic embedding

⊔k−1
i=1 B4(ri)→ (M,ωλ ) is of [J1]-Kähler type.

Conversely, assume there exists a Kähler-type embedding f =
⊔k−1

i=1 fi :
⊔k−1

i=1 B4(ri)→ (M,ωλ ) which
is holomorphic with respect to a complex structure I compatible with ωλ and such that I = φ ∗J1 for some
φ ∈ Diff0(M). Set xi := fi(0), i = 1, . . . ,k−1, and x := (x1, . . . ,xk−1), φ(x) := (φ(x1), . . . ,φ(xk−1)).

Recall that a Kähler-type embedding of a closed ball is defined as a Kähler-type embedding of a larger
open ball. Therefore using Proposition 6.8 and composing f , if necessary, with a small parallel translation
of the balls in R2n, we may assume without loss of generality that the points φ(x1), . . . ,φ(xk−1) ∈ M are
in general position.

By part (I) of Theorem 3.2, the cohomology class α̃r̄ ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ. The
diffeomorphism φ : M → M induces a diffeomorphism M̃I,x → M̃J1,φ(x) that identifies Ĩ with J̃1 as well
as the classes α̃r̄ in H2(M̃I,x;R) and in H2(M̃J1,φ(x);R) (abusing the notation, we use the same letter for
both classes). Therefore α̃r̄ ∈ H2(M̃J1,φ(x);R) is Kähler with respect to J̃1. Since φ(x1), . . . ,φ(xk−1) are
in general position, Proposition 7.2 yields that the conditions (v), (c1)-(c6) are satisfied. This proves part
A and finishes the proof of the theorem.
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8 The case of CP1 ×CP1

Let M = CP1 ×CP1 and J0 the standard product complex structure on M.
Let J2l , l ∈ Z≥0, be a complex structure on M such that (M,J2l) is biholomorphic to the Hirzebruch

surface F2l . In particular, we assume that J0 is the standard product complex structure on M. Let b, f ∈
H2(M;Z) be the cohomology classes Poincaré-dual, respectively, to [CP1 × pt] and [F ] = [pt ×CP1].

Let ω0 be the Fubini-Study form on CP1 normalized so that
∫
CP1 ω0 = π . For each µ ≥ 1 define the

symplectic form ωµ on M as
ωµ := µω0 ⊕ω0.

Thus, [ωµ ] = π(µb+ f ).
Further on in this section, we fix

2 ≤ k ≤ 8,

R1,R2, . . . ,Rk−2 > 0,0 < Rk−1 < 1,

and define r1 ≥ r2 ≥ . . .≥ rk as the numbers

R2
1

µ +1−R2
1
,

R2
2

µ +1−R2
1
, . . . ,

R2
k−2

µ +1−R2
1
,

µ −R2
1

µ +1−R2
1
,

1−R2
1

µ +1−R2
1
,

sorted in the non-increasing order.
Abusing the notation, for a blow-up of M (respectively, of CP2) at any finite collection of points

x1,x2, . . . (respectively, y1,y2, . . .) we will use the same letter ΠM (respectively, ΠCP2) for the blow-up
projection and the same letters e1,M,e2,M, . . . (respectively, e1,CP2 ,e2,CP2 , . . .) for the cohomology classes
Poincaré-dual to the homology classes of the exceptional divisors. For a complex structure I on M we
will denote by Ĩ the lift of I to any complex blow-up of (M, I), and similarly we will denote by Ĩst the lift
of the standard complex structure Ist on CP2 to any complex blow-up of CP2.

Let x1, . . . ,xk−1 ∈ M be distinct points in M.
Pick yk−1,yk ∈CP2. Consider the complex blow-ups M̃J0,xk−1 of (M,J0) at xk−1 and (C̃P2

Ist ,yk−1,yk , Ĩst)
of (CP2, Ist) at yk−1,yk.

There exists a biholomorphism Ψ : (M̃J0,xk−1 , J̃0)→ (C̃P2
Ist ,yk−1,yk , Ĩst) such that the induced isomor-

phism
Ψ

∗ : H2(C̃P2
Ist ,yk−1,yk ;Z)→ H2(M̃J0,xk−1 ;Z)

identifies
Π

∗
Mb,Π∗

M f ,ek−1,M ∈ H2(M̃J0,xk−1 ;Z)

respectively with

Π
∗
CP2h− ek−1,CP2 ,Π∗

CP2h− ek,CP2 ,Π∗
CP2h− ek−1,CP2 − ek,CP2 ∈ H2(C̃P2

Ist ,yk−1,yk ;Z).

Identify the complement of the exceptional divisor in M̃J0,xk−1 with M \ xk−1 and the complement of

the union of the exceptional divisors in C̃P2
Ist ,yk−1,yk with CP2 \{yk−1,yk}. The restriction of Ψ to the

complements defines then a map ψ : M \ xk−1 → CP2 \{yk−1,yk}.
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We say that the points x1, . . . ,xk−1 ∈ M\xk−2 are in general position if the points ψ(x1), . . . ,ψ(xk−2),
yk−1,yk ∈ CP2 are distinct and in general position as k points of CP2. It is easy to see that this definition
does not depend on the choices of y1,y2 and Ψ.

Arguing as in the proofs of Proposition 6.8 and Proposition 7.1, and using the fact that any two points
of M can be mapped into each other by a biholomorphism of (M,J0), we get the following claim.

Proposition 8.1
The set of tuples (x1, . . . ,xk−2,xk−1) ∈ M̂k−1 that are in general position is connected and dense in

M̂k−1.

Proposition 8.2
Assume x1, . . . ,xk−1 ∈ M are in general position.
Then the cohomology class

Π
∗
M[ωµ ]−π

k−1

∑
i=1

R2
i ei,M ∈ H2(M̃J0,x1,...,xk−1 ;R)

is Kähler with respect to J̃0 if and only if the numbers r1, . . . ,rk satisfy the inequalities (v), (c1)-(c6) listed
in Proposition 6.9.

Proof of Proposition 8.2:
The biholomorphism Ψ : (M̃J0,xk−1 , J̃0)→ (C̃P2

Ist ,yk−1,yk , Ĩst) induces a biholomorphism

ϒ :
(

M̃J0,x1,...,xk−1 , J̃0

)
→
(
C̃P2

Ist ,ψ(x1),...,ψ(xk−2),yk−1,yk
, Ĩst

)
that identifies the cohomology class

Π
∗
M[ωµ ]−π

k−1

∑
i=1

R2
i ei,M = π

(
µΠ

∗
Mb+Π

∗
M f −

k−1

∑
i=1

R2
i ei,M

)
∈ H2(M̃J0,x1,...,xk−1 ;R)

with
π ·
(

µ
(
Π

∗
CP2h− ek−1,CP2

)
+
(
Π

∗
CP2h− ek,CP2

)
−

−R2
k−1
(
Π

∗
CP2h− ek−1,CP2 − ek,CP2

)
−

k−2

∑
i=1

R2
i ei,CP2

)
∈ H2

(
C̃P2

Ist ,ψ(x1),...,ψ(xk−2),yk−1,yk
;R
)
.

Recalling the description of Ψ∗ : H2(C̃P2
Ist ,yk−1,yk ;Z)→ H2(M̃J0,xk−1 ;Z) above and the fact that [ωFS] =

πh ∈ H2(CP2;R), we get that

π ·
(

µ
(
Π

∗
CP2h− ek−1,CP2

)
+
(
Π

∗
CP2h− ek,CP2

)
−

−R2
k−1
(
Π

∗
CP2h− ek−1,CP2 − ek,CP2

)
−

k−2

∑
i=1

R2
i ei,CP2

)
=
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π ·
((

µ +1−R2
k−1
)

Π
∗
CP2h−

k−2

∑
i=1

R2
i ei,CP2−

−
(
µ −R2

k−1
)

ek−1,CP2 − (1−R2
k−1)ek,CP2

)
=

=
(
µ +1−R2

k−1
)(

Π
∗
CP2(πh)−π ·

k−2

∑
i=1

R2
i

µ +1−R2
k−1

ei,CP2−

−
µ −R2

k−1

µ +1−R2
k−1

ek−1,CP2 −
1−R2

k−1

µ +1−R2
k−1

ek,CP2

)
=

=
(
µ +1−R2

k−1
)(

Π
∗
CP2 [ωFS]−π

k−2

∑
i=1

R2
i

µ +1−R2
k−1

ei,CP2−

−
µ −R2

k−1

µ +1−R2
k−1

ek−1,CP2 −
1−R2

k−1

µ +1−R2
k−1

ek,CP2

)
Thus, the cohomology class

Π
∗
M[ωµ ]−π

k−1

∑
i=1

R2
i ei,M = π ·

(
µΠ

∗
Mb+Π

∗
M f −

k−1

∑
i=1

R2
i ei,M

)
∈ H2(M̃J0,x1,...,xk−1 ;R)

is Kähler with respect to J̃0 if and only if the cohomology class

Π
∗
CP2 [ωFS]−π

k−2

∑
i=1

R2
i

µ +1−R2
k−1

ei,CP2 −
µ −R2

k−1

µ +1−R2
k−1

ek−1,CP2−

−
1−R2

k−1

µ +1−R2
k−1

ek,CP2 ∈ H2
(
C̃P2

Ist ,ψ(x1),...,ψ(xk−2),yk−1,yk
;R
)

is Kähler with respect to Ĩst . Since the numbers

R2
1

µ +1−R2
k−1

, . . . ,
R2

k−2

µ +1−R2
k−1

,
µ −R2

k−1

µ +1−R2
k−1

,
1−R2

k−1

µ +1−R2
k−1

,

sorted in non-increasing order, are exactly r1, . . . ,rk, and the points ψ(x1), . . . ,ψ(xk−2),yk−1,yk ∈ CP2

are in general position, the proposition follows from Proposition 6.9.

Now we are ready to prove Theorem 3.20 – let us recall it here.

Theorem 8.3 (=Theorem 3.20)
Let M = CP1 ×CP1 and let ωµ be as above.
Let Σ ⊂ (M,J0) be either a proper (possibly empty) complex submanifold or Σ = (pt×CP1)∪(CP1×

pt).
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Then the following claims hold:

A. Assume 2 ≤ k ≤ 8, R1,R2, . . . ,Rk−2 > 0, 0 < Rk−1 < 1. Consider the numbers

R2
1

µ +1−R2
k−1

,
R2

2

µ +1−R2
k−1

, . . . ,
µ −R2

k−1

µ +1−R2
k−1

,
1−R2

k−1

µ +1−R2
k−1

,

sort them in the non-increasing order and denote the resulting k numbers by r1 ≥ . . .≥ rk.
Then the following conditions are equivalent:

• There exists a [J0]-Kähler-type embedding
⊔k−1

i=1 B4(Ri)→ (M \Σ,ωµ) holomorphic with respect
to a complex structure on M that is compatible with ωµ and isotopic to J0 by an isotopy preserving
Σ (as a set).

• The numbers r1, . . . ,rk defined above satisfy the inequalities in part A of Theorem 3.14.

For r1, . . . ,rk satisfying the inequalities (v), (c1)-(c6) in part A of Theorem 3.14, any symplectic
embedding

⊔k−1
i=1 B4(Ri)→ (M \Σ,ωµ) is, in fact, of [J0]-Kähler type.

B. Assume that µ = 1.
Then for any l ∈Z>0, any symplectic embedding of a disjoint union of 2l2 equal balls into (M \Σ,ω1)

is, in fact, of [J0]-Kähler type, and such symplectic (or, equivalently, [J0]-Kähler-type) embeddings are
unobstructed.

More precisely, if 2l2Vol(B4(r),ω0) < Vol(M,ω1), then there exists a Kähler-type embedding of⊔2l2

i=1 B4(r) into (M \ Σ,ω1) which is holomorphic with respect to a complex structure on M that is
compatible with ω1 and isotopic to J0 by an isotopy preserving Σ (as a set).

C. For any k ∈ Z>0 and R1, . . . ,Rk > 0, any two Kähler-type embeddings
⊔k

i=1 B4(Ri)→ (M \Σ,ωµ) (if
they exist!) lie in the same orbit of the Sympc

0(M \Σ,ωµ)-action, meaning that the space of Kähler-type
embeddings

⊔k
i=1 B4(Ri)→ (M \Σ,ωµ) is connected.

Proof of Theorem 8.3 (=Theorem 3.20):
As we already explained in Section 3.3, part B of the theorem follows from Theorem 3.7 and part C

follows from part (I) of Theorem 3.4.
The proof of part A follows the proof of part A of Theorem 7.3, with Proposition 8.2 used instead of

Proposition 7.2.

9 Existence of Kähler-type embeddings of balls and Campana-simple
complex structures

In this section we discuss Kähler-type embeddings of balls and other domains into symplectic manifolds
admitting Kähler-type complex structures with “few" complex subvarieties. The relevant claims about
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such complex structures on tori, K3 surfaces and IHS-hyperkähler manifolds will be discussed in
Sections 10 and 12. The results of Sections 3.4, 3.5 on the existence of Kähler-type embeddings of
disjoint unions of balls into tori, K3 surfaces and IHS-hyperkähler manifolds will then follow as particular
cases of the general result (Theorem 9.3) stated further on in this section.

As before, let M, dimR = 2n, be a closed connected manifold equipped with a Kähler-type symplectic
form ω .

Let us recall the definition of a Campana-simple complex structure.
Assume I is a Kähler-type complex structure on M. Let U be the union of all positive-dimensional

proper complex subvarieties of (M, I). The set U is either a countable union of proper analytic subvarieties
of M (and hence has a dense connected complement) or the whole M (see e.g. [EV1, Remark 4.2]).

If U is a countable union of proper analytic subvarieties of M, the complex structure I is called
Campana-simple and the points of M \U are called Campana-generic with respect to I.

Examples of manifolds with a Campana-simple complex structure include the generic complex tori of
complex dimension > 1 (see Proposition 10.10), as well as generic K3 surfaces (see Proposition 10.20),
and generic deformations of hyperkähler manifolds [Ver4]. One can show that a torus equipped with a
Campana-simple complex structure does not admit any positive-dimensional proper complex subvarieties
(see Proposition 10.4), and the same holds for a generic complex K3 surface [Ver5].

Remark 9.1
1. If I is Campana-simple, then the complex manifold (M, I) is not projective, since otherwise it would
have admitted a globally defined meromorphic function f and could have been represented as the union
of zero divisors of the functions f − a, for all a ∈ C and the zero divisor of f−1. Consequently, the
symplectic form ω compatible with a Campana-simple complex structure cannot be rational – otherwise,
for a Campana-simple complex structure I compatible with ω the complex manifold (M, I) would have
been projective, by the Kodaira embedding theorem [Ko].

2. Conjecturally (see [Cam, Question 1.4], [CaDV, Conj. 1.1]), any closed connected manifold equipped
with a Campana-simple complex structure is bimeromorphic to a hyperkähler orbifold or a finite quotient
of a torus. For complex threefolds this was proved in [HöP].

Campana-simple complex structures on M form a Diff(M)-invariant subset of the set of all Kähler-type
complex structures on M.

Definition 9.2
Denote by Teichs(M) ⊂ Teich(M) the set of points of Teich(M) that can be represented by

Campana-simple complex structures.
If C0 is a connected component of CK(M), denote by Teichs

C0
(M)⊂ TeichC0(M) the set of points

of TeichC0(M) that can be represented by Campana-simple complex structures. In other words,

Teichs
C0
(M) = Teichs(M)∩TeichC0(M).
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Theorem 9.3
Let C0 be a connected component of CK(M) compatible with ω . Let k ∈ Z>0, r̄ = (r1, . . . ,rk) ∈

(R>0)
k.

Assume Vol
(⊔k

i=1 B2n(ri),ω0

)
< Vol(M,ω).

Then the following claims hold:

(I) Let M, dimR M = 2n, be a closed manifold. Assume that ω is a symplectic form on M compatible
with a Campana-simple complex structure I on M.

Then Kähler-type embeddings
⊔k

i=1 B2n(ri)→ (M,ω) are unobstructed.
More precisely, if Vol

(⊔k
i=1 B2n(ri),ω0

)
< Vol(M,ω), then

⊔k
i=1 B2n(ri) admits an [I]-Kähler-type

embedding into (M,ω).

(II) Assume that TeichC0(M,ω)∩Teichs
C0
(M) is a dense connected subset of TeichC0(M,ω).

Then any two Kähler-type embeddings
⊔k

i=1 B2n(ri) → (M,ω) favoring C0 lie in the same orbit
of the Symp(M,ω)∩Diff0(M)-action. In particular, there exists [I] ∈ TeichC0(M,ω) such that both
embeddings are of [I]-Kähler-type.

If, in addition, SympH(M) acts transitively on the set of connected components of CK(M) compatible
with ω , then any two Kähler-type embeddings

⊔k
i=1 B2n(ri) → (M,ω) lie in the same orbit of the

SympH(M,ω)-action.

For the proof of Theorem 9.3 we need the following claim.

Proposition 9.4
Assume I is a Campana-simple complex structure on M, a cohomology class α ∈ H2(M;R) is Kähler

with respect to I, and the points x1, . . . ,xk ∈ M are Campana-generic with respect to I. Set x := (x1, . . . ,xk).
Then the cohomology class

α̃r̄ := Π
∗
α −π

k

∑
i=1

r2
i ei ∈ H2(M̃I,x;R)

is Kähler with respect to Ĩ if and only if α̃n
r̄ > 0, or, equivalently, if and only if

Vol

(
k⊔

i=1

B2n(ri),ω0

)
< ⟨αn, [M]⟩.

Proof of Proposition 9.4:
This is proved in [EV1, Thm. 8.6] – the proof is a straightforward application of the Demailly-Paun

theorem [DP, Thm. 0.1] describing the Kähler cone of an arbitrary closed manifold equipped with a
Kähler-type complex structure.

Now we can prove Theorem 9.3.
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Proof of Theorem 9.3:
The complex structure I appearing in the statement of part (I) of the theorem is compatible with ω .

Hence, the cohomology class α := [ω] is Kähler with respect to I.
Pick points x1, . . . ,xk ∈ M \Σ that are Campana-generic with respect to I. It is possible to pick these

points in the complement of Σ, because the set of Campana-generic points of (M, I) is dense in M (see
above) and Σ is a proper complex submanifold of (M, I). Set x := (x1, . . . ,xk).

Assume that

Vol

(
k⊔

i=1

B2n(ri),ω0

)
< Vol(M,ω) = ⟨αn, [M]⟩.

Then Proposition 9.4 yields that α̃r̄ := Π∗α −π ∑
k
i=1 r2

i ei ∈ H2(M̃I,x;R) is Kähler with respect to Ĩ. Now
the claim of part (I) follows from part (I) of Theorem 3.2.

Let us prove part (II).
Assume that TeichC0(M,ω)∩ Teichs

C0
(M) is a dense connected subset of TeichC0(M,ω). The

argument we have just used in the proof of part (I) shows that I ∈ KC0(r̄). Therefore

TeichC0(M,ω)∩Teichs
C0
(M)⊂ KC0(r̄).

Hence, KC0(r̄) is also a dense connected subset of TeichC0(M,ω). Now part (II) of Theorem 3.2 yields
the needed claim.

This finishes the proof of Theorem 9.3.

10 The case of tori and K3 surfaces

In this section we discuss Campana-simple complex structures on tori and K3 surfaces and show how to
deduce Theorem 3.22 from Theorem 9.3.

10.1 Campana-simple complex structures on tori

Denote by Lin ⊂ CK(T2n) the set of linear complex structures on T2n that are compatible with the
standard orientation. It is naturally identified with the space of linear complex structures on R2n.

It is well-known (see e.g. [McDS, Prop. 2.5.2]) that the space Lin can be identified with
GL+(2n,R)/GL(n,C) which is a connected smooth manifold. Here the group GL(n,C) is embedded in
GL(2n,R) by the map

C 7→
(

Re C −Im C
Im C Re C

)
.

The tangent space TJLin of Lin at a point J ∈ Lin is the space of all real 2n×2n matrices R satisfying
RJ + JR = 0. The complex structure on TJLin is given by R 7→ JR (since GL+(2n,R)/GL(n,C) is
symmetric space, this almost complex structure on Lin is indeed integrable [Bes]). Thus, further on Lin
will be viewed as a connected complex manifold.

The following claim is an easy exercise (cf. [EV1, Sec. 6]).
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Proposition 10.1
The space T 2n ×Lin can be equipped with a complex structure so that T 2n ×Lin → Lin is a complex-

analytic deformation family such that for each J ∈ Lin the complex structure on the fiber over J is J itself.

For l = 1, . . . ,n denote by Λ2l be the space of exterior 2l-forms on R2n and by Λ2l
Q ⊂ Λ2l the space of

exterior 2l-forms on R2n with rational coefficients.
Let ω be a linear symplectic form on T2n. Denote by ω ∈ Λ2 its lift to R2n – it is a linear symplectic

form on R2n.
For a linear complex structure J on T2n denote by J the linear complex structure on R2n which is the

lift of J.

Proposition 10.2
The cohomology class [ω] ∈ H2(T2n;R) of the linear symplectic form ω is Kähler with respect to a

linear complex structure J on T2n if and only if ω is compatible with J.

Proof of Proposition 10.2:
If ω is compatible with J then, obviously, [ω] ∈ H2(T2n;R) is Kähler with respect to J.
Assume [ω] ∈ H2(T2n;R) is Kähler with respect to J and let us prove that ω is compatible with J –

i.e., ω is Kähler on (T2n,J). Since [ω] ∈ H2(T2n;R) is Kähler with respect to J, there exists a Kähler
form η on (T2n,J) cohomologous to ω . Viewing T2n as a compact Lie group and averaging η over T2n,
we get a T2n-invariant – hence, linear – form ζ which is Kähler on (T2n,J) and cohomologous to ω .
Since there is only one linear form representing a given cohomology class, we get that ζ = ω , which
implies that ω is Kähler on (T2n,J).

This finishes the proof of the proposition.

Denote by Lin(ω) the subset of Lin formed by the linear complex structures on T2n compatible with
the linear symplectic form ω . It is naturally identified with the space of the linear complex structures on
R2n compatible with ω .

For each l = 1, . . . ,n and each a ∈ H2l(T2n;R), a ̸= 0, denote by Ta ⊂ Lin the set of J ∈ Lin such that
a ∈ H l,l

J (T2n). It can also be viewed as the Hodge locus of a for the complex-analytic deformation family
T 2n ×Lin → Lin given by Proposition 10.1. Consequently, Ta is a complex subvariety of Lin – see e.g.
[Voi, Vol. 2, Lem. 5.13].

Example 10.3
Let ω be a linear symplectic form on T2n.
Let a = [ω] ∈ H2(T2n;R). Then the set Ta is the set of linear complex structures on T2n preserving

ω (because a real cohomology class of degree 2 is of type (1,1) with respect to a complex structure if
and only if it is preserved by it). In this case Ta is a smooth complex submanifold of Lin and this can be
verified by elementary means.
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Indeed, first of all, Ta is smooth (see e.g. [McDS, Lem. 2.5.5]). If J ∈ Ta, then TJTa is formed by
2n×2n matrices R satisfying the two conditions: RJ+JR = 0 and RtAR = 0, where A is the matrix of the
linear symplectic form ω on R2n. Since JtAJ = A (because J ∈ Ta), JR satisfies the same two conditions
meaning that TJTa is a complex vector subspace of TJLin. This means that Ta is a complex submanifold
of Lin.

The set Lin(ω) is then an open contractible submanifold of Ta (see e.g. [McDS, Lem. 2.5.5]).

Proposition 10.4
Any Campana-simple complex structure on T2n admits no proper positive-dimensional complex

subvarieties.

Proof of Proposition 10.4:
A Campana-simple complex structure on T2n is of Kähler type and therefore can be mapped by a

diffeomorphism of T2n into a linear complex structure (see [EV1, Prop. 6.1]), which is also Campana-
simple. Thus, it suffices to prove the proposition for a Campana-simple linear complex structure J.

Assume, by contradiction, that such a J admits a positive-dimensional proper complex subvariety.
The parallel translations of T2n preserve J and therefore any point of T2n is contained in the image of that
subvariety under a parallel translation, which contradicts the assumption that J is Campana-simple. This
finishes the proof of the proposition.

Denote by Lins ⊂ Lin the space of linear Campana-simple complex structures on T2n.

Proposition 10.5
Let ω be a linear symplectic form on T2n.
Then ω is compatible with a Campana-simple linear complex structure (i.e., Lins ∩Lin(ω) ̸= /0) if

and only if ω is irrational. Moreover, in this case Lins ∩Lin(ω) is a dense connected subset of Lin(ω).

Proof of Proposition 10.5:
Assume ω is rational. Then, by part 1 of Remark 9.1, there are no Campana-simple complex structures

compatible with ω .
Now assume ω is irrational, or, equivalently, that ω is not a real multiple of a form in Λ2

Q. Let us
prove that Lins ∩Lin(ω) is a dense connected subset of Lin(ω).

We start with the following lemma.

Lemma 10.6
Assume that a linear symplectic form η is not a real multiple of a form in Λ2

Q.
Then for all l = 1, . . . ,n−1 the form η l is not a real multiple of a form in Λ2l

Q .

Proof of Lemma 10.6:
Assume by contradiction that η l is a real multiple of a form in Λ2

Q. Since η is symplectic, η l ̸= 0 and
we can assume without loss of generality that η l ∈ Λ2l

Q .
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Consider the Galois group Gal(C/Q) of C over Q (i.e., the group of field automorphisms of C)
and its action on the coefficients of η with respect to the standard basis of R2n. It is proved in [Lee]
that if η l = ξ l for some ξ ∈ Λ2 and l = 1, . . . ,n−1, then ξ =±η . This implies that the action of each
element of Gal(C/Q) either fixes all the coefficients of η or multiplies each of them by −1. The complex
numbers preserved by the action of the whole group Gal(C/Q) are exactly the rationals (a proof of this
well-known fact can be easily extracted e.g. from [Yale]). Therefore the square of each coefficient of η

lies in Q. This easily implies that there exists a positive r ∈Q such that the field Q[
√

r] contains all the
coefficients of η .

If all elements Gal(C/Q) fix all the coefficients of η , we get that η ∈ Λ2
Q, in contradiction to the

hypothesis of the lemma. Therefore there exists an element of Gal(C/Q) whose action multiplies all the
coefficients of η by −1, meaning that all these coefficients are rational multiples of

√
r. Therefore, η is a

positive real multiple of a form in Λ2
Q, which contradicts again the hypothesis of the lemma. Thus, the

assumption that η l is a real multiple of a form in Λ2
Q has led us to a contradiction, which means that it is

false. This proves the lemma.

Since ω is not a real multiple of a form in Λ2
Q, Lemma 10.6 yields that for each l = 1, . . . ,n−1 the

form ω
l ∈ Λ2l is not a real multiple of a form in Λ2l

Q .
Let a ∈ H2l(T2n;Q), a ̸= 0, l = 1, . . . ,n−1, and let us view a ∈ H2l(T2n;Q) as an exterior 2l-form

on R2n with rational coefficients: a ∈ Λ2l
Q . We also view Lin(ω) as the set of linear complex structures on

R2n compatible with ω .
The set Ta ∩Lin(ω) is a complex subvariety of the complex manifold Lin(ω).
We claim that this complex subvariety is proper.
Indeed, assume, by contradiction, that it is not. Then, since Lin(ω) is connected, Ta ∩Lin(ω) =

Lin(ω), meaning that any linear complex structure on R2n compatible with ω also preserves the exterior
2l-form a.

Denote by G ⊂ SL(2n,R) the group of linear automorphisms of R2n preserving ω . It is isomorphic,
as a real Lie group, to Sp(2n,R). The set Lin(ω) is invariant under conjugations in G and thus generates
a normal subgroup H of G. But G ∼= Sp(2n,R) is a simple Lie group and therefore each normal subgroup
of G has to either lie in its center (equal to {Id,−Id}) or coincide with the whole G (see e.g. [Rag]). The
former option is clearly not satisfied for H and therefore we get that H = G, meaning that a is preserved
by the whole group G. By a theorem of Weyl [Weyl, Ch. VI, Sec. 1] (see e.g. [GV, Sect. 5.3.2] for a
modern presentation), the only exterior 2l-forms preserved by the whole G are the real multiples of ω

2l .
Thus, a ∈ Λ2l

Q is a real multiple of ω
2l which, as we have seen above, is a not a real multiple of any form

with rational coefficients. We have obtained a contradiction, and this proves the claim that Ta ∩Lin(ω) is
a proper complex subvariety of of the complex manifold Lin(ω).

The claim we have proved implies that the complement in the connected complex manifold Lin(ω) of
the countable union of proper complex subvarieties Ta ∩Lin(ω), a ∈ H2l(T2n;Q), a ̸= 0, l = 1, . . . ,n−1,
is connected and dense in Lin(ω). Any complex structure J in this complement is Campana-simple.
Indeed, the 2l-dimensional complex subvarieties of (T2n,J), l = 1, . . . ,n−1, all have non-zero rational
fundamental classes; the corresponding Poincaré-dual non-zero rational cohomology classes are of type
(l, l) (see e.g. [Voi, Vol. 1, Sec. 11]), which is impossible since J /∈ Ta for all a ∈ H2l(T2n;Q), a ̸= 0.
Therefore (T2n,J) has no complex subvarieties of dimension 2l, l = 1, . . . ,n− 1, meaning that J is
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Campana-simple.
Thus, the set Lins ∩Lin(ω) of Campana-simple complex structures lying in Lin(ω) contains a subset

which is connected and dense in Lin(ω). Hence, Lins ∩Lin(ω) is also connected and dense in Lin(ω).
This finishes the proof.

Since Lin is connected, there is a connected component of CK(T2n) containing it – denote this
connected component by Cl .

Let x = 0 ∈ T2n = R2n/Z2n. Let Diff(T2n,x) be a subgroup of Diff(T2n) formed by the diffeo-
morphisms of T2n fixing x. Let Diff0(T2n,x) be the identity component of Diff(T2n,x). The group
Diff0(T2n,x) lies in Diff0(T2n) and is, in fact, the identity component of the subgroup of Diff0(T2n)
formed by the elements of Diff0(T2n) fixing x.

Let DiffH(T2n,x) := DiffH(T2n)∩Diff(T2n,x). Clearly, Diff0(T2n,x)⊂ DiffH(T2n,x).

Proposition 10.7
Let I ∈ CK(T2n).
Then the following claims hold:

A. There exist unique JI ∈ Lin and φI ∈ DiffH(T2n,x) so that JI = φ ∗
I I.

B. The complex structure JI and the diffeomorphism φI depend continuously on I.
C. If I ∈ Cl , then φI ∈ Diff0(T2n,x).
D. If I ∈ Cl and ψ∗I ∈ Lin for some ψ ∈ Diff0(T2n), then ψ∗I = I.

Proof of Proposition 10.7:
Let us prove part A of the proposition.
The proof of the existence of φI and JI goes as in the proof of [EV1, Prop. 6.1].
Namely, recall the construction of the Albanese map: Let Ω1

I (T2n) be the space of holomorphic
complex-valued holomorphic 1-forms on the complex manifold (T2n, I). It is a complex vector space of
dimension n that can be identified with H1,0

I (T2n;C). Pick a basis ς1, . . . ,ςn of Ω1
I (T2n). The Albanese

map Alb I : T2n → Cn/ΓI is defined by the map y 7→
(∫

γ
ς1, . . . ,

∫
γ

ςn

)
, where γ is an arbitrary smooth

path from x = 0 to y and ΓI is a lattice in Cn formed by the vectors
(∫

γ
ς1, . . . ,

∫
γ

ςn

)
for all the loops γ .

The Albanese map Alb I is a biholomorphism between (T2n, I) and the complex torus Cn/ΓI with the
complex structure induced by the standard complex structure on Cn – see e.g. [Voi, Vol. 1, Def. 12.10
and Thm. 12.15].

Denote by πI : Cn → Cn/Γ the natural projection and let FI : R2n → Cn be an R-linear isomorphism
of vector spaces mapping Z2n to ΓI . Then FI covers a diffeomorphism f̄I : T 2n = R2n/Z2n → Cn/ΓI ,
i.e., f̄I ◦πI = πI ◦FI . One easily sees that FI can be chosen in such a way that f̄I induces the same map
H∗(R2n/Z2n)→ H∗(Cn/Γ) as Alb I .

Clearly, f̄ ∗I I is a linear complex structure on T 2n = R2n/Z2n. Therefore φI := f̄−1
I ◦ Alb I is a

diffeomorphism mapping I to a linear complex structure JI on T 2n, acting as identity on H∗(T 2n) and
sending x = 0 to itself. Thus, φI ∈ DiffH(T2n,x). This proves the existence of JI and φI .

Let us prove the uniqueness of JI and φI . It suffices to show that if J0,J1 ∈ Lin and φ ∗J0 = J1 for
some φ ∈ DiffH(T2n,x), then J0 = J1 and φ = Id.
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Denote the lifts of J0,J1 to R2n respectively by J0, J1. The diffeomorphism φ : T2n → T2n lifts to
a diffeomorphism φ̄ : R2n → R2n such that φ̄ ∗J0 = J1 and for each v ∈ Z2n there exists v′ ∈ Z2n so that
φ̄(x+ v) = φ̄(x)+ v′ for all x ∈ Z2n.

The group GL+(2n,R) acts transitively on Lin (see e.g. [McDS], Prop. 2.5.2). Therefore there
exists F ∈ GL+(2n,R) so that F∗J1 = J0. Then Γ := F(Z2n) is a lattice in R2n and F φ̄ : R2n → R2n is a
diffeomorphism preserving Ĵ0 so that for each v ∈ Z2n there exists v′′ ∈ Γ so that F φ̄(x+v) = F φ̄(x)+v′′

for all x ∈ Z2n.
Using an appropriate linear change of coordinates on R2n, we can assume without loss of generality

that J0 is the standard linear complex structure on R2n coming from the identification R2n ∼= Cn and thus
F φ̄ : Cn → Cn is a holomorphic map. The partial derivatives of this map with respect to the complex
coordinates on Cn are Z2n-invariant and holomorphic, hence descend to holomorphic maps on the standard
complex torus T2n, hence are constant. Therefore F φ̄ : Cn → Cn is a complex-linear affine map and
consequently φ̄ is of the form φ̄(x) = Ax+ c for some A ∈ SL(2n,Z), c ∈ R2n. Since φ acts trivially on
H∗(T2n), the matrix A is just the identity and φ̄ is just a parallel translation by c. Hence, φ is a parallel
translation too, and since φ preserves x, we have φ = Id. Consequently J0 = J1.

This proves the uniqueness of JI and φI and finishes the proof of part A.
Part B follows from Proposition A.1 and from the construction of JI and φI in part A.
Let us prove part C. Assume I ∈ Cl . Then it can be connected to some J ∈ Lin by a continuous path

{It} ⊂ Cl . Considering the path {φIt} ⊂ DiffH(T2n,x), which is continuous by part B, and noting that
φJ = Id, we immediately obtain that φI ∈ Diff0(T2n,x). This proves part C.

Let us prove part D. If I ∈ Cl and ψ∗I ∈ Lin for some ψ ∈ Diff0(M), then precomposing ψ with a
parallel translation, which is a biholomorphism of (T2n, I), we can assume without loss of generality that
ψ(x) = x. Thus, ψ ∈ DiffH(T2n,x). By part A, this means that ψ∗I = JI = I. This proves part D and
finishes the proof of the proposition.

Proposition 10.8
The restriction of the projection Cl → Cl/Diff0(T2n) =: TeichCl (T2n) to Lin is a homeomorphism

Lin → Cl/Diff0(T2n) = TeichCl (T2n) that identifies Lin(ω)⊂ Cl with TeichCl (T2n,ω)⊂ TeichCl (T2n).

Proof of Proposition 10.8:
Parts A and C of Proposition 10.7 imply that every orbit of the Diff0(T2n)-action on Cl intersects Lin.

By part D of Proposition 10.7, it intersects Lin at exactly one point.
Thus, the map Lin → Cl/Diff0(T2n), associating to each I ∈ Lin its Diff0(T2n)-orbit, is well-defined

and bijective. Clearly, it is also continuous.
By part B of Proposition 10.7, the map Cl → Lin, I 7→ JI , is continuous. This means that the inverse

of the map Lin → Cl/Diff0(T2n) is continuous too.
Thus, the projection Lin → Cl/Diff0(T2n) is a homeomorphism. Clearly, the image of Lin(ω) under

this homeomorphism lies in TeichCl (T2n,ω). Let us show that it coincides with TeichCl (T2n,ω), or,
equivalently, that for any complex structure I ∈ Cl compatible with ω we have JI ∈ Lin(ω). Indeed, since
ω is compatible with I, the cohomology class [ω] is Kähler with respect to I, hence also with respect to JI ,
because JI obtained from I by the action of Diff0(T2n). Now Proposition 10.2 implies that JI ∈ Lin(ω).
Consequently, the homeomorphism Lin → Cl/Diff0(T2n) identifies Lin(ω) with TeichCl (T2n,ω).
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Proposition 10.9
Let ω be a Kähler-type form on T2n.
Then SympH(T2n,ω) acts transitively on the set of connected components of CK(T2n) compatible

with ω .

Proof of Proposition 10.9:
By [EV1, Prop. 6.1], any Kähler-type form on T2n can be mapped by a diffeomorphism of T2n acting

trivially on H∗(T2n) to a linear symplectic form. Thus, we can assume without loss of generality that our
Kähler-type form ω is linear.

Let I ∈ CK(T2n) be an arbitrary complex structure compatible with ω . By [EV1, Prop. 6.1], there
exists a diffeomorphism φ of T2n acting trivially on H∗(T2n) so that the complex structure φ ∗I is linear.
The symplectic form φ ∗ω is then compatible with φ ∗I and has the same cohomology class as ω . Thus,
the cohomology class [ω] is Kähler with respect to the linear complex structure φ ∗I. Therefore, by
Proposition 10.2, the linear form ω itself is Kähler with respect to φ ∗I.

We have obtained that φ ∗ω and ω are cohomologous and compatible with the same complex structure
φ ∗I. Therefore the straight path in the space of 2-forms connecting these forms is formed by cohomolo-
gous symplectic forms. By Moser’s theorem [Mos], this means that there exists ψ ∈ Diff0(T2n) such that
ψ∗φ ∗ω = ω . Thus, φψ ∈ SympH(T2n,ω) and moreover (φψ)∗I = ψ∗φ ∗I lies in the same connected
component of CK(T2n) as φ ∗I – i.e., in Cl .

We have proved that any complex structure I ∈ CK(T2n) compatible with ω can be mapped by an
element of SympH(T2n,ω) into a complex structure lying in Cl . This readily implies the proposition.

Proposition 10.10
Let ω be a Kähler-type symplectic form on T2n.
Then ω is compatible with a Campana-simple complex structure if and only if ω is irrational.
In this case for any connected component C0 of CK(T2n) compatible with ω the set

TeichC0(T2n,ω)∩Teichs(T2n) is a dense connected subset of TeichC0(T2n,ω).

Proof of Proposition 10.10:
Assume that ω is rational. Then, by part 1 of Remark 9.1, there are no Campana-simple complex

structures compatible with ω .
By [EV1, Prop. 6.1], any Kähler-type form on T2n can be mapped by a diffeomorphism of T2n to a

linear symplectic form. Thus, we can assume without loss of generality that our Kähler-type form ω is
linear. In view of Proposition 10.9, we can also assume without loss of generality that C0 = Cl . Now the
proposition follows from Proposition 10.5, Proposition 10.8.

10.2 Campana-simple complex structures on K3 surfaces

Let M be a smooth manifold underlying a K3 surface.
The space Teich(M) has the structure of a complex manifold (see e.g. [Cat]). More precisely, a

combination of the fundamental theorems of Kuranishi [Ku1] and Bogomolov-Tian-Todorov [Bo2, Tia,
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Tod] shows that for any J0 ∈ CK(M) the Kuranishi space of (M,J0) (the base of a certain universal
complex-analytic local deformation family of a complex structure defined in [Ku1]) is a smooth complex
manifold as long as the canonical bundle of (M,J0) is trivial, which, of course, is true in the hyperkähler
case, and in particular, for K3 surfaces. Moreover (see e.g. [Cat]), there exists a homeomorphism between
a neighborhood U[J0] of [J0] in Teich(M) and an open subset of the Kuranishi space of (M,J0). This
homeomorphism maps each [J] ∈ U[J0] to the point x of the Kuranishi space corresponding to a complex
structure on M representing [J]. The pullback of the universal complex-analytic local deformation family
over the Kuranishi space under the homeomorphism, together with a smooth trivialization of the universal
fibration over a neighborhood of x in the Kuranishi space, induces a complex-analytic deformation family
M×U[J0] → U[J0]. The smooth and the complex structures on U[J0] are the pullbacks of the corresponding
structures on the Kuranishi space.

Remark 10.11
Note that the complex manifold Teich(M) is not Hausdorff (see [At1], [BurR, p.238], cf. [Sal]).

The description above also implies that for any J ∈ CK(M) any smooth path in Teich(M) starting at
[J] can be lifted to a smooth path in CK(M) starting at J.

Let q : H2(M;C)×H2(M;C) → C be the intersection form. Its restriction to H2(M;R) is a real-
valued symmetric form of signature (3,19). A subspace of H2(M;R) is called positive if the restriction
of q to it is positive. We use ⊥ to denote the orthogonal complement with respect to q in H2(M;R).

Let I ∈ CK(M). Then

dimC H2,0
I (M;C) = dimC H0,2

I (M;C) = 1, dimC H1,1
I (M;C) = 20

(see e.g. [Huyb]). The spaces H2,0
I (M;R)⊕H0,2

I (M;R) and H1,1
I (M;R) are orthogonal with respect to

q. If Ω is a holomorphic 2-form spanning H2,0
I (M;C), then

(
H2,0

I (M;C)⊕H0,2
I (M;C)

)
∩H2(M;R) is

the 2-dimensional plane spanned by ReΩ and ImΩ. Denote this plane by WI . The basis {ReΩ, ImΩ}
defines an orientation of the plane WI . We have W⊥

I = H1,1
I (M;C)∩H2(M;R). The restriction of q to WI

is positive and the restriction of q to its orthogonal complement H1,1
I (M;R) in H2(M;R) has signature

(1,19). Consequently, the set {a ∈ H1,1
I (M;R) | q(a,a) > 0} has two connected components: the one

that contains the Kähler cone of (M, I) is called the positive cone of (M, I) and will be denoted Pos(M, I),
and the other one is −Pos(M, I).

Let Gr++(H2(M;R)) be the Grassmanian of positive oriented 2-dimensional planes in
H2(M;R). There is a canonical diffeomorphism identifying Gr++(H2(M;R)) with an open subset
{l ∈ PH2(M;C) | q(l, l) = 0, q(l, l̄)> 0} of the quadric {l ∈ PH2(M;C) | q(l, l) = 0} (see e.g. [Huyb,
Ch.6, Prop. 1.5] and [Ver6, Claim 2.9]). Thus Gr++(H2(M;R)) has the structure of a connected complex
manifold.

Define the period map Per : Teich(M)→ Gr++(H2(M;R)) by

Per([I]) :=WI,

where [I] ∈ Teich(M) is the element of Teich(M) represented by I.
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The global Torelli theorem for K3 surfaces (see [Huyb] and the references therein to the original
papers) implies the following claim.

Theorem 10.12
A. There exists a subset S⊂ Teich(M) so that for each connected component C0 of CK(M) the intersec-
tion S∩TeichC0(M) is dense and connected in TeichC0(M) and the map

Per : TeichC0(M)→ Gr++(H2(M;R))

is a surjective local biholomorphism which is injective on S∩TeichC0(M).

B. Assume that I0, I1 ∈ CK(M), [I0], [I1] ∈ S and Per([I0]) = Per([I1]).
Then there exists a unique diffeomorphism φ ∈ DiffH(M) such that φ ∗I1 = I0.

By a (−2)-class we will mean an integral cohomology class b ∈ H2(M;Z) such that q(b,b) =−2.
For each I ∈ CK(M) denote by S(M, I) the set of all (−2)-classes b ∈ H2(M;Z) that are of type (1,1)

with respect to I.
The Kähler cone of (M, I) admits the following description.

Theorem 10.13 (see e.g. [Huyb, Sec. 8, Thm. 5.2], cf. [AmV2, Thm. 6.2])
The Kähler cone of (M, I) is a connected component of the set

Pos(M, I)\∪b∈S(M,I)

(
b⊥∩Pos(M, I)

)
.

In particular, if b⊥∩Pos(M, I) = /0 for all b ∈ S(M, I), then the Kähler cone of (M, I) is just Pos(M, I).

The next result follows from the Calabi-Yau theorem (formerly the Calabi conjecture) [Yau2] com-
bined with Bochner’s technique – see [Bea1] (cf. e.g. [GHJ, Thm. 5.11]) for the proof of the existence
and uniqueness; see [FuS, Thm. 6.3] for the proof of the smooth dependence.

Theorem 10.14
Let I ∈ CK(M) and let a ∈ H2(M;R) be a Kähler class with respect to I.
Then there exists a unique η ∈ SK(M) compatible with I such that [η ] = a and the Riemannian metric

η(·, I·) is Ricci-flat. The form η depends smoothly on the pair (I,a) (as I varies in a complex-analytic
deformation family).

Remark 10.15
For any Kähler structure (η , I) on M such that the Riemannian metric η(·, I·) is Ricci-flat, the form

η and the complex structure I can be included together in a hyperkähler structure (ω1 := η ,ω2,ω3, I1 :=
I, I2, I3).

Proposition 10.16
Let I ∈ CK(M) be compatible with ω .
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Then there exists J ∈ CK(M) isotopic to I, so that the Riemannian metric ω(·,J·) is Ricci-flat.

Proof of Proposition 10.16:
By Theorem 10.14, the complex structure I is a part of a (unique) Kähler structure (η , I) on M for

which the corresponding Riemannian metric η(·, I·) is Ricci-flat, and moreover [η ] = [ω]. The symplectic
forms ω and η are cohomologous and compatible with the same I and therefore, by Moser’s theorem
[Mos], there exists φ ∈ Diff0(M) such that φ ∗η = ω . Then J := φ ∗I is compatible with ω and the
Riemannian metric ω(·,J·) is Ricci-flat.

Let ω be a Kähler-type symplectic form on M.
Define Dω ⊂ Gr++

(
H2(M;R)

)
as the set of positive oriented 2-dimensional planes W ⊂ H2(M;R)

such that [ω] ∈W⊥ and (R[ω]⊕W )⊥ does not contain any (−2)-classes.

Proposition 10.17
The set Dω is a dense connected subset of the submanifold Gr++

(
[ω]⊥

)
of Gr++

(
H2(M;R)

)
.

Proof of Proposition 10.17:
We have q([ω], [ω])> 0. The restriction of q to [ω]⊥ is a quadratic form of signature (2,19). The

space Gr++([ω]⊥) of positive oriented 2-dimensional planes in [ω]⊥ is a smooth connected manifold
diffeomorphic to SO(2,19)/SO(2)×SO(19).

If a ∈ H2(M;Z) is a (−2)-class, then a and [ω] are linearly independent and the restriction of q to
a⊥∩ [ω]⊥ has signature (2,18). The space Gr++

(
a⊥∩ [ω]⊥

)
of positive oriented 2-dimensional planes

in a⊥∩ [ω]⊥ is a closed submanifold of Gr++

(
[ω]⊥

)
diffeomorphic to SO(2,18)/SO(2)×SO(18) and

thus has real codimension 2 in Gr++

(
[ω]⊥

)
.

The set Dω is the complement in Gr++

(
[ω]⊥

)
of the (at most) countable union of the closed

codimension-2 submanifolds Gr++

(
a⊥∩ [ω]⊥

)
for all (−2)-classes a∈H2(M;Z) such that q(a, [ω]) = 0.

Therefore Dω is a dense connected subset of the submanifold Gr++

(
[ω]⊥

)
of Gr++

(
H2(M;R)

)
. (The

density follows from Baire’s theorem; for a proof of the connectivity see e.g. [Ver6, Lem. 4.10].)

Proposition 10.18
Assume that C0 is a connected component of CK(M) compatible with the symplectic form ω (i.e., C0

contains a complex structure compatible with ω).
Then TeichC0(M,ω) = Per−1(Dω)∩TeichC0(M) and it is a dense connected subset of the closed

submanifold Per−1 (Gr++

(
[ω]⊥

))
∩TeichC0(M) of TeichC0(M).

Proof of Proposition 10.18:
Let us show that TeichC0(M,ω)⊂ Per−1(Dω)∩TeichC0(M). Consider a complex structure I ∈ C0

compatible with ω . Then [ω] ∈ H1,1
I (M;R). Therefore WI is orthogonal to [ω]. Moreover, R[ω]⊕WI

cannot contain any (−2)-class in its orthogonal complement: indeed, if a ∈ H2(M;Z) is orthogonal to
(H2,0

I (M;C)⊕H0,2
I (M;C))∩H∗(M;R), then a ∈ H1,1

I (M;R). However, by Theorem 10.13, a (−2)-class
in H1,1

I (M;R) cannot be orthogonal to a Kähler class with respect to I. Thus, we have proved that
Per([I]) =WI belongs to Dω . This yields that TeichC0(M,ω)⊂ Per−1(Dω)∩TeichC0(M).
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Now let us show that TeichC0(M,ω)⊃ Per−1(Dω)∩TeichC0(M).
By the hypothesis of the proposition, there exists a complex structure I ∈ C0 compatible with ω . In

view of Proposition 10.16, we may assume, without loss of generality, that the metric ω(·, I·) is Ricci-flat.
Let W be an arbitrary plane belonging to Dω . By Proposition 10.17, it can be connected with WI by a

smooth path of planes in Dω . Since Per is a local biholomorphism (by part A of Theorem 10.12) and
by the above-mentioned path-lifting property of the CK(M)→ Teich(M), this path can be lifted to a
smooth path in C0 – i.e., there exists a smooth path of complex structures {It}, 0 ≤ t ≤ 1, in C0 such that
I0 = I and WI1 = W and WIt ∈ Dω for each t ∈ [0,1]. Consequently, for each t ∈ [0,1] the plane WIt is
orthogonal to [ω] and (R[ω]⊕W )⊥ does not contain any (−2)-classes. Therefore, by Theorem 10.13,
for each t ∈ [0,1] either [ω] or −[ω] lies in the Kähler cone of (M, It).

We claim that it is always [ω], and not −[ω].
Indeed, consider the set A of t ∈ [0,1] for which it is [ω]. The set A is non-empty since 0 ∈ A: the

cohomology class [ω] is Kähler with respect to I = I0. The set A is also open: if for some t0 ∈ [0,1] the
class [ω] is Kähler with respect to It0 , then for any t ∈ [0,1] sufficiently close to t0, the class [ω]1,1It = [ω]
is Kähler with respect to It (by the corollary of the Kodaira-Spencer stability theorem [EV1, Thm. 5.6],
see Section A.2). For the same reason the complement of A in [0,1] (i.e., the set of t ∈ [0,1] for which
−[ω] is Kähler with respect to It) is also open. Thus, A is open, closed and non-empty, meaning that
A = [0,1], which proves the claim.

Thus, for each t ∈ [0,1] the class [ω] is Kähler with respect to a Kähler-type complex structure
It depending smoothly on t and for t = 0 the metric ω(·, I0·) is Ricci-flat. By Theorem 10.14, there
exists a smooth family of cohomologous symplectic forms ωt , 0 ≤ t ≤ 1, such that ω0 = ω and ωt is
compatible with It (and, moreover, the Riemannian metric ωt(·, It ·) is Ricci-flat) for each t ∈ [0,1]. Now
Moser’s theorem [Mos] implies that there exists φ ∈ Diff0(M) such that φ ∗ω1 = ω . Consequently, the
complex structure φ ∗I1 is compatible with ω , meaning that [I1] ∈ TeichC0(M,ω). Hence, W =WI1 lies
in Per (TeichC0(M,ω)). This yields TeichC0(M,ω)⊃ Per−1(Dω)∩TeichC0(M).

We have shown that TeichC0(M,ω) =Per−1(Dω)∩TeichC0(M). Since, by part A of Theorem 10.12,
Per : TeichC0(M)→ Gr++(H2(M;R)) is a surjective local biholomorphism which is injective on a dense
connected subset of TeichC0(M) and since, by Proposition 10.17, Dω is a dense connected manifold of
a closed submanifold of Gr++

(
H2(M;R)

)
= Per (TeichC0(M)), we get that TeichC0(M,ω) is a dense

connected subset of the closed submanifold Per−1 (Gr++

(
[ω]⊥

))
∩TeichC0(M) of TeichC0(M).

Proposition 10.19
The group SympH(M,ω) acts transitively on the set of connected components of CK(M) compatible

with ω .

Proof of Proposition 10.19:
Assume C0 and C1 are connected components of CK(M) compatible with ω . We need to show that

there exists a symplectomorphism in SympH(M,ω) mapping C1 into C0.
By Proposition 10.18,

Per (TeichC0(M,ω)) = Per (TeichC1(M,ω)) = Dω .

Pick I0 ∈ TeichC0(M,ω)∩S, I1 ∈ TeichC1(M,ω)∩S, so that Per([I0]) =Per([I1]). By part B of Theorem
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10.12, there exists φ ∈ DiffH(M) such that φ ∗I1 = I0. Then φ ∗ω and ω are cohomologous and compatible
with the same complex structure I0. Therefore the straight path in the space of 2-forms connecting
these forms is formed by cohomologous symplectic forms. By Moser’s theorem [Mos], this means
that there exists ψ ∈ Diff0(M) such that ψ∗φ ∗ω = ω . Thus, φψ ∈ SympH(T2n,ω), and moreover
(φψ)∗I1 = ψ∗φ ∗I1 lies in the same connected component of CK(M) as I0 = φ ∗I1 – i.e., in C0.

Thus, the symplectomorphism φψ ∈ SympH(M,ω) maps C1 into C0.

Proposition 10.20
The Kähler-type symplectic form ω is compatible with a Campana-simple complex structure on M if

and only if ω is irrational. Moreover, in this case for any connected component C0 of CK(M) compatible
with ω the set TeichC0(M,ω)∩Teichs(M) is a dense connected subset of TeichC0(M,ω).

Proof of Proposition 10.20:
Assume ω is rational. Then, by part 1 of Remark 9.1, there are no Campana-simple complex structures

compatible with ω .
Now assume ω is irrational. Let us show that the set of Campana-simple structures lying in

TeichC0(M,ω) is a dense connected subset of TeichC0(M,ω).
Let b ∈ H2(M;Q), b ̸= 0. Since [ω] ∈ H2(M;R) is not a real multiple of a rational cohomology

class (and, in particular, not a real multiple of b), dimR b⊥ ∩ [ω]⊥ = 20. Consequently, the space
Gr++

(
b⊥∩ [ω]⊥

)
of positive oriented 2-dimensional planes in b⊥ ∩ [ω]⊥ has real codimension 2 in

Gr++

(
[ω]⊥

)
if q(b,b)< 0 and is empty otherwise.

As we have seen in the proof of Proposition 10.17, Dω is the complement in Gr++

(
[ω]⊥

)
of an (at

most) countable union of closed codimension-2 submanifolds Gr++

(
a⊥∩ [ω]⊥

)
for all (−2)-classes

a ∈ H2(M;Z) such that q(a, [ω]) = 0. Therefore the complement in Dω to the countable union of
codimension-2 submanifolds Gr++

(
b⊥∩ [ω]⊥

)
, b ∈ H2(M;Q), b ̸= 0, is a dense connected subset of

Dω . Denote the latter subset by A.
By part A of Theorem 10.12 and Proposition 10.18, TeichC0(M,ω)∩Per−1(A) is a dense con-

nected subset of TeichC0(M,ω). We claim that each I such that [I] ∈ Per−1(A)∩ TeichC0(M,ω) is
Campana-simple. Indeed, if (M, I) admits a proper positive-dimensional analytic subvariety – i.e., a
(possibly singular) complex curve – then the cohomology class b ∈ H2(M;Q), b ̸= 0, Poincaré-dual to
the fundamental class of the subvariety is of type (1,1) with respect to I (see e.g. [Voi, Vol. 1, Sec. 11]).
Therefore the 2-dimensional plane Per([I]) ∈ A is orthogonal to b in H2(M;R) which contradicts the
definition of A.

Thus, TeichC0(M,ω)∩Per−1(A) is a dense connected subset of the set TeichC0(M,ω)∩Teichs(M).
Hence, TeichC0(M,ω)∩Teichs(M) is a dense connected subset of TeichC0(M,ω).

10.3 Kähler-type embeddings of balls into tori and K3 surfaces – the proofs

Now we are ready to prove Theorem 3.22. For convenience we restate it here.
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Theorem 10.21 (Theorem 3.22)
Let M, dimR M = 2n, be either T2n or a smooth manifold (of real dimension 4) underlying a complex

K3 surface and let ω be a Kähler-type symplectic form on M.
Assume that ω is irrational.
Let k ∈ Z>0, r1, . . . ,rk > 0.
Then the following claims hold:

A. Kähler-type embeddings of
⊔k

i=1 B2n(ri) into (M,ω) are unobstructed.
More precisely, assume that Vol

(⊔k
i=1 B2n(ri),ω0

)
<Vol(M,ω) and ω is compatible with a Campana-

simple complex structure I.
Then there exists an [I]-Kähler-type embedding

⊔k
i=1 B2n(ri)→ (M,ω).

B. The group SympH(M,ω) acts transitively on the set of connected components of CK(M) compatible
with ω .

C. Any two Kähler-type embeddings
⊔k

i=1 B2n(ri)→ (M,ω) (if they exist!) lie in the same orbit of the
SympH(M,ω)-action. They lie in the same orbit of the Symp(M,ω)∩Diff0(M)-action if and only if they
favor a common connected component of CK(M). In the latter case there exists [I] ∈ Teich(M,ω) such
that both embeddings are of [I]-Kähler-type.

Proof of Theorem 10.21 (=Theorem 3.22):
Let us first consider the torus case. By Proposition 10.9, in this case we may assume without loss of

generality that C0 = Cl . Now part A of the theorem follows from part (I) of Theorem 9.3 and Proposition
10.10. Part B of the theorem is exactly Proposition 10.10. Part C of the theorem follows from part B and
from part (II) of Theorem 9.3 and Proposition 10.10. This finishes the proof in the torus case.

Let us now prove the result in the K3 case. Here part A of the theorem follows from part (I) of
Theorem 9.3 and Proposition 10.20. Part B is exactly Proposition 10.20. Part C of the theorem follows
from part B and from part (II) of Theorem 9.3. This finishes the proof in the K3 case.

11 Tame embeddings of arbitrary domains

In this section we will prove the results on tame embeddings into tori and K3 surfaces stated in Section 3.4.
Let M, dimR M = 2n, be a closed connected oriented manifold admitting Kähler structures (compatible

with the orientation).
Denote by Ωm(M) the space of smooth differential m-forms on M, m = 0,1, . . . ,2n. Let S(M) denote

the space of symplectic structures on M and C(M) the space of complex structures on M. We equip these
spaces with the C1-topologies.

Let Wi ⊂R2n, i= 1, . . . ,k, be compact domains with piecewise-smooth boundary, so that their interiors
contain the origin and H2(Wi;R) = 0. Denote

W :=
k⊔

i=1

Wi.
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Proposition 11.1
Assume ω is a symplectic form on M and f : W→ (M,ω) is a tame embedding holomorphic with

respect to a complex structure I on M tamed by ω . Let V be a sufficiently small neighborhood of I in
C(M) so that each I′ ∈ V is tamed by ω .

Then there exists a neighborhood U = U(V) of ω in S(M) such that for each ω ′ ∈ U there exists
a tame embedding f ′ : W→ (M,ω ′) holomorphic with respect to a complex structure I′ ∈ V which is
tamed by ω ′ and isotopic to I.

Proof of Proposition 11.1:
The following lemma is standard – it is proved by an easy modification of the proof of a similar result

in [EV1, Lem. 9.3].

Lemma 11.2
Let V ⊂ M, dimRV = 2n, be a compact submanifold with a piecewise-smooth boundary. Let X be a

neighborhood of zero in the space Ω1(M).
Then there exists a neighborhood X′ of zero in the space Ω2(M), so that for each η ∈ X′, which is

exact on V , one can choose σ ∈ X such that dσ = η on V .

Assume that the tame embedding f :=
⊔k

i=1 fi : W→ (M,ω) extends (as a tame embedding) to an
embedding of an open neighborhood of U=

⊔k
i=1Ui, where Ui, i = 1, . . . ,k, is a compact domain with

a piecewise-smooth boundary containing Wi in its interior and homotopy equivalent to Wi, so that f is
holomorphic (on a neighborhood of U) with respect to I.

Choose a neighborhood U1 of ω in S(M) so that for each ω ′ ∈ U1 the following conditions are
satisfied:

• For each t ∈ [0,1] the form ω + t(ω −ω ′) is symplectic.

• ω ′ is tamed by any I′ ∈ V.

Choose a neighborhood W of Id in the group Diff0(M) so that φ∗I ∈ V for each φ ∈W.
Choose a neighborhood Y of 0 in the space of time-dependent smooth vector fields on M, equipped

with the C1-topology, so that for each vector field v∈Y the time [0,1]-flow of v generates a diffeomorphism
lying in W and such that for each t ∈ [0,1] the time-[0, t] flow of v maps each f (Wi) into f (Int Ui),
i = 1, . . . ,k.

Since for all i = 1, . . . ,k we have H2(Wi;R) = H2(Ui;R) = 0, for each ω ′ ∈ U1 the restriction of the
form ω −ω ′ to f (U) is exact. Each σ ∈ Ω1(M) satisfying dσ = ω −ω ′ defines a smooth time-dependent
vector field v on M by the formula(

ω + t(ω −ω
′)
)
(vt , ·) = σ(·), t ∈ [0,1].

In view of Lemma 11.2, applied to f (U), there exists a neighborhood U2 ⊂ U1 of ω in SK(M) so that for
each ω ′ ∈ U3 one can choose σ as above so that the corresponding v lies in Y.
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Let ω ′ ∈ U2 and let {φt} ⊂ Diff0(M), t ∈ [0,1], be the time-[0, t] flow of v ∈ Y. Then there exists
an open neighborhood Zi ⊂ Int Ui of each Wi, i = 1, . . . ,k, so that φt(Zi) ⊂ f (Int Ui) for all t ∈ [0,1],
i = 1, . . . ,k. Moser’s argument3 [Mos] shows that

φ
∗
1 ω

′| f (Zi) = ω| f (Zi), i = 1, . . . ,k.

We claim that

g := φ1 ◦ f =
k⊔

i=1

φ1 ◦ fi : W→ (M,ω ′)

is a tame embedding.
Indeed, it is clearly a smooth embedding extending to a neighborhood Z :=

⊔k
i=1 Zi of W so that

g(Z)⊂ Int f (U). It is also symplectic on Z:

g∗ω
′ = (φ1 ◦ f )∗ω

′ = f ∗φ
∗
1 ω

′ = f ∗ω = ω0,

where ω0 is the standard symplectic form on R2n. Note that since the embedding f is holomorphic with
respect to the complex structure I, the embedding g is holomorphic with respect to the complex structure
J := (φ1)∗I.

By our construction, φ1 ∈W, hence J ∈ V. Since ω ′ ∈ U2 ⊂ U1, the complex structure J is tamed
by ω ′. This shows that for U := U2 and any ω ′ ∈ U there exists a tame embedding g : W → (M,ω ′)
holomorphic with respect to the complex structure J tamed by ω ′ and isotopic to I.

Proposition 11.3
Let ε > 0.
Assume ω is a Kähler-type symplectic form on M and f : W → (M,ω) is an ε-tame embedding

holomorphic with respect to a Kähler-type complex structure I on M tamed by ω .
Then there exists a neighborhood U of ω in SK(M) such that for each ω ′ ∈ U there exists an ε-tame

embedding f ′ : W→ (M,ω ′) holomorphic with respect to a complex structure which is tamed by ω ′ and
isotopic to I.

Proof of Proposition 11.3:
Choose a neighborhood V of I in CK(M).
Applying Proposition 11.1 to W, we get a neighborhood U of ω in S(M) such that for each ω ′ ∈ U

there exists a tame embedding f ′ : W→ (M,ω ′) holomorphic with respect to a complex structure I′ ∈ V

tamed by ω ′ so that I′ = φ∗I ∈ V for some φ ∈ Diff0(M). In particular, for all p,q ∈ Z≥0,

[ω ′]p,qI′ = [ω ′]p,q
φ∗I = [ω ′]p,qI .

The cohomology class [ω ′] depends continuously on ω ′ and the Hodge decomposition (with respect
to I) of a cohomology class depends continuously on that class. Also, the Kähler cone of (M, I) is an
open subset of H1,1(M;R). In view of these facts, we can choose, if necessary, a smaller neighborhood U

and assume without loss of generality that for any ω ′ ∈ U:
3Let us note that in the proof of [EV1, Prop. 9.1] we applied Moser’s argument to symplectic forms on the domain of f ,

while here we will apply it to symplectic forms on the target of f – i.e., on M.
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• The class [ω ′]1,1I′ = [ω ′]1,1I is Kähler,

• For a := [ω]2,0I′ +[ω]0,2I′ = [ω ′]2,0I +[ω ′]0,2I , we have |⟨an, [M]⟩|< ε .

This yields that f ′ : W→ (M,ω ′) is an ε-tame symplectic embedding holomorphic with respect to
the complex structure I′ which is tamed by ω ′ and isotopic to I.

Corollary 11.4
Assume ω is a Kähler-type symplectic form on M and f : W→ (M,ω) is a Kähler-type embedding

holomorphic with respect to a Kähler-type complex structure I on M compatible ω .
Then, for any ε > 0, there exists a neighborhood U of ω in SK(M) such that for each ω ′ ∈ U there

exists an ε-tame embedding f ′ : W→ (M,ω ′) holomorphic with respect to a complex structure which is
tamed by ω ′ and isotopic to I.

Proposition 11.5
Let ε > 0.
Then the function ω 7→ νT,ε(M,ω,W) on S(M) is lower semicontinuous with respect to the C1-

topology on S(M).

Proof of Proposition 11.5:
Consider an arbitrary ω ∈ S(M). Let us prove that νT,ε is lower semicontinuous at ω .
Let δ ,λ > 0. Assume f : λW → (M,ω) is an ε-tame embedding holomorphic with respect to a

Kähler-type complex structure I on M tamed by ω .
By Proposition 11.3, there exists a neighborhood U of ω in SK(M) such that for each ω ′ ∈ U there

exists an ε-tame embedding f ′ : W→ (M,ω ′). Choosing, if necessary, a smaller neighborhood U, we
may assume without loss of generality that

Vol(λW,ω0)

Vol(M,ω ′)
>

Vol(λW,ω0)

Vol(M,ω)
−δ , ∀ω

′ ∈ U.

This shows that νT,ε is lower semicontinuous at ω .
Thus, νT,ε is lower semicontinuous at all ω ∈ S(M), meaning that it is a lower semicontinuous

function.

Let us now prove Theorem 3.27. For convenience, we restate it here.

Theorem 11.6 (= Theorem 3.27)
Let M be either a torus T2n or a smooth manifold underlying a K3 surface.
Let ω1, ω2 be Kähler-type forms on M so that

∫
M ωn

1 =
∫

M ωn
2 > 0 and the forms ω1, ω2 are irrational.

Let Wi ⊂ R2n, i = 1, . . . ,k, be compact domains with piecewise-smooth boundary whose interiors
contain the origin. Assume that H2(Wi;R) = 0 for all i. Set W :=

⊔k
i=1Wi.

Then, for any ε > 0,
νT,ε(M,ω1,W) = νT,ε(M,ω2,W).
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Proof of Theorem 11.6 (= Theorem 3.27):
Without loss of generality, it is enough to proof the theorem in case Vol(M,ω1) = Vol(M,ω2) = 1.
Denote by SK1(M) the space of Kähler forms on M of total volume 1. Equip SK1(M) with the

C∞-topology. The group Diff+(M) of orientation-preserving diffeomorphisms of M acts on SK1(M) and
the function ω 7→ νT,ε(M,ω,W) is clearly invariant under the action.

By [EV1, Thm. 9.2] in the torus case and [EV3, Thm. 1.7] in the K3 case, the Diff+(M)-orbits of ω1
and ω2 are dense in SK1(M). The function νT,ε(M, ·,W) is constant on both orbits. Together with the
lower semicontinuity of νT,ε(M, ·,W) proved in Proposition 11.5, this implies that

νT,ε(M,ω1,W)≤ νT,ε(M,ω2,W),

and, by the same token,
νT,ε(M,ω1,W)≥ νT,ε(M,ω2,W).

Thus,
νT,ε(M,ω1,W) = νT,ε(M,ω2,W),

as required. This proves the theorem.

Corollary 11.7
Let M be either a torus T2n or a smooth manifold underlying a K3 surface. Let Wi ⊂ R2n, i = 1, . . . ,k,

be compact domains with piecewise-smooth boundary whose interiors contain the origin.
Assume that H2(Wi;R) = 0 for all i. Set W :=

⊔k
i=1Wi. Let ε > 0.

Finally, assume that for any δ > 0 there exists an irrational Kähler-type form ωδ on M and λ > 0 so
that λW admits a Kähler-type embedding into (M,ωδ ) and Vol(λW,ω0)/Vol(M,ωδ )≥ 1−δ .

Then the following claims hold:

A. If ωδ = ω for all δ > 0 and ω is irrational, then there exists a dense Diff+(M)-orbit – the Diff+(M)-
orbit of ω – in the space of Kähler-type symplectic forms of volume Vol(M,ω) on M such that for any
ω ′ in this orbit we have νK(M,ω ′,W) = 1.

B. There exists a Diff+(M)-invariant open dense set of Kähler-type symplectic forms on M, depending
on W and ε and containing, in particular, all irrational Kähler-type symplectic forms on M, so that for
each ω ′ in this set νT,ε(M,ω ′,W) = 1.

Proof of Corollary 11.7:
Let us prove part A.
The hypothesis of part A implies that νK(M,ω,W) = 1. Since ω is irrational, [EV1, Thm. 9.2] in the

torus case and [EV3, Thm. 1.7] in the K3 case yield that the Diff+(M)-orbit of ω is dense in the space
of Kähler-type symplectic forms of volume Vol(M,ω) on M. Since the function ω ′ 7→ νK(M,ω ′,W) is
Diff+(M)-invariant and νK(M,ω,W) = 1, we have νK(M,ω ′,W) = 1 for any ω ′ in the Diff+(M)-orbit
of ω .

This yields part A of the corollary.
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Let us prove part B.
Rescaling, if necessary, the forms ωδ , we may assume without loss of generality that they all have

the same volume – say, volume 1. Since the forms ωδ are all irrational, Theorem 11.6 implies then that
νT,ε(M,ωδ ,W) does not depend on δ . On the other hand, the hypothesis of the corollary implies that
νT,ε(M,ωδ ,W)≥ 1−δ for all δ > 0. Hence, νT,ε(M,ωδ ,W) = 1 for all δ > 0. Using again Theorem
11.6 and rescaling the forms, we get that νT,ε(M,ω ′,W) = 1 for any irrational Kähler-type form ω ′ on
M, of any volume. By Proposition 11.3, we get νT,ε(M,ω ′′,W) = 1 also for any Kähler-type form ω ′′

lying in a sufficiently small neighborhood U(ω ′) of any irrational form ω ′ in SK(M). Let U be the
Diff+(M)-orbit of

⋃
ω ′ U(ω ′), where the union is taken over all irrational ω ′ ∈ SK(M). Clearly, U is

a Diff+(M)-invariant open dense subset of SK(M), containing all the irrational forms in SK(M), and
νT,ε(M,ω ′,W) = 1 holds for any ω ′ ∈U .

This finishes the proof of part B and of the corollary.

Corollary 11.8 (= Corollary 3.29)
Assume:

• M is either T2n or a smooth manifold underlying a K3 surface.

• W :=
⊔k

i=1 B2n(ri) is a disjoint union of k (possibly different) balls.

• ε > 0.

Then the following claims hold:

A. For any irrational Kähler-type symplectic form ω on M we have

νK(M,ω,W) = 1,

meaning that Kähler-type embeddings of λW into (M,ω) are unobstructed.

B. There exists a Diff+(M)-invariant open dense set of Kähler-type symplectic forms on M, depending on
W and ε and containing, in particular, all irrational Kähler-type symplectic forms on M, so that for each
ω in this set νT,ε(M,ω,W) = 1 – meaning that ε-tame embeddings of λW into (M,ω) are unobstructed.

Proof of Corollary 11.8 (=Corollary 3.29):
Assume without loss of generality that n > 1. (In the case n = 1 the result is known – see Remark

3.23).
Part A of the corollary is equivalent to the existence claim proved in Theorem 3.22.
Part B of the corollary follows then from part B of Corollary 11.7.

Now let us prove Corollary 3.30. We recall it here.

Corollary 11.9 (= Corollary 3.30)
Assume:
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• M = T2n.

• W :=
⊔k

i=1Wi is either a disjoint union of k identical copies of a 2n-dimensional polydisk

B2n1(R1)× . . .×B2nl (Rl), n1 + . . .+nl = n, R1, . . . ,Rl > 0, l > 1,

or a disjoint union of k identical copies of a parallelepiped

P(e1, . . . ,e2n) :=

{
2n

∑
j=1

s je j,0 ≤ s j ≤ 1, j = 1, . . . ,2n

}
,

where e1, . . . ,e2n is a basis of the vector space R2n.

• ε > 0.

Then the following claims hold:

A. For any positive volume there exists a dense Diff+(T2n)-orbit (of an irrational Kähler-type symplectic
form depending on W) in the space of Kähler-type symplectic forms of that volume on T2n such that
for any ω ′ in this orbit we have νK(T2n,ω ′,W) = 1 – or, in other words, Kähler-type embeddings
λW→ (T2n,ω ′) are unobstructed.

B. There exists a Diff+(T2n)-invariant open dense set of Kähler-type symplectic forms on T2n, depending
on W and ε and containing, in particular, all irrational Kähler-type symplectic forms on T2n, so that for
each ω ′ in this set νT,ε(T2n,ω ′,W) = 1 – or, in other words, ε-tame embeddings λW→ (T2n,ω ′) are
unobstructed.

Proof of Corollary 11.9 (=Corollary 3.30):
Assume without loss of generality that n > 1. (In the case n = 1 the result is known – see Remark

3.23).
Let us consider the case where W is the disjoint union of k identical copies of the polydisk B2n1(R1)×

. . .×B2nl (Rl). In this case the proof is the following straightforward modification of the proof of [EV1,
Cor. 3.3].

Assume, without loss of generality, that Vol(W,ω0) = 1. For each m ∈ Z>0 denote by Ωm the
standard symplectic form on R2m. For each i = 1, . . . , l set

vi := Vol(B2ni(Ri),Ωni) = π
nini!R

2ni
i .

Note that

Vol(W,Ω2n) = kVol(B2n1(R1)× . . .B2nl (Rl),Ω2n) = kN
l

∏
i=1

vi,

where
N :=

n!
n1! · . . . ·nl!

.
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Since Vol(W,ω0) = 1, we have
kNv1 · . . . · vl = 1.

For each m ∈ Z>0 and w1, . . . ,wm ∈ R>0, set

w̄ := (w1, . . . ,wm) ∈ Rm,

vw̄ := m!w1 · . . . ·wm,

and denote by ωw̄ the symplectic form

ωw̄ :=
m

∑
i=1

wid pi ∧dqi

on the torus T2m = R2m/Z2m. Note that Vol(T2m,ωw̄) = vw̄.
Set

k1 := k,k2 = . . .= kl := 1,

so that
k = k1 · . . . · kl.

One can choose w̄i ∈ R2ni , i = 1, . . . , l, so that the following conditions hold:

(i) vw̄i = kivi for all i = 1, . . . , l.

(ii) The vector w̄ := (w̄1, . . . , w̄k) ∈ Rn is not proportional to a vector with rational coordinates.

(iii) For each i = 1, . . . , l such that ni > 1 the vector w̄i ∈ Rni is not proportional to a vector with rational
coordinates.

Conditions (i) and (iii) can be achieved since, by our assumption, n > 1, and since for any m > 1 and
C > 0 the subset of the set

{(w1, . . . ,wm) ∈ Rm | w1, . . . ,wm > 0,w1 · . . . ·wm =C}

formed by the vectors that are not proportional to a vector with rational coordinates is dense.
Consider the symplectic form ωw̄ on T2n – it is of Kähler type (since it is a linear symplectic form)

and irrational (because of condition (ii)). Note that, by condition (i),

∫
T2n

ω
n
w̄ = N

l

∏
i=1

vw̄i = N
l

∏
i=1

kivi =

= Nk
l

∏
i=1

kivi =
∫
T2n

ω
n = 1.

Also note that, by condition (ii), for any 0 < λ < 1 for all i

Vol(T2ni ,ωw̄i) = vw̄i = kivi > λkivi = Vol
(

λ
⊔
ki

(B2ni(Ri),Ωni)

)
,
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where
⊔

ki
denotes the disjoint union of ki equal copies of the ball. By condition (iii), for each i = 1, . . . , l,

such that ni > 1, the form ωw̄i on T2ni is irrational. Therefore, by Theorem 3.22 and Remark 3.23, there
exists a Kähler-type embedding

fi :
⊔
ki

(
λB2ni(Ri),Ωni

)
→ (T2ni ,ωw̄i).

Accordingly, the direct product of all such embeddings fi, i = 1, . . . , l, is a Kähler-type embedding

f : (λW,Ω2n)→ (T2n,ωw̄),

where λW is the disjoint union of k1 · . . . · kl = k copies of λ
(
B2n1(R1)× . . .×B2nl (Rl)

)
. Thus, we have

found an irrational Kähler-type form ωw̄ of volume 1 on T2n such that for any 0 < λ < 1 there exists a
Kähler-type embedding of (λW,Ω2n = ω0) into (T2n,ωw̄). Now Corollary 11.7 yield the claims of parts
A and B of Corollary 11.9 in the case where W is the disjoint union of k equal polydisks.

Now let us consider the case where W is the disjoint union of k identical copies of a parallelepiped

P(e1, . . . ,e2n) :=

{
2n

∑
j=1

s je j,0 ≤ s j ≤ 1, j = 1, . . . ,2n

}
,

where e1, . . . ,e2n is a basis of the vector space R2n.
Note that for any 0 < λ < 1, putting k copies of λP(e1,e2, . . . ,e2n), alongside each other in the e1-

direction we get a Kähler-type embedding of the disjoint union of k identical copies of λP(e1,e2, . . . ,e2n)
into P(ke1,e2, . . . ,e2n). Considering the composition of this Kähler-type embedding with Kähler-type, or
ε-tame, embeddings of P(ke1,e2, . . . ,e2n) into T2n, we readily get that it suffices to prove the corollary
for just one parallelepiped P(e1, . . . ,e2n) (i.e., for the case where k = 1).

Therefore let us prove the corollary for one parallelepiped P(e1, . . . ,e2n).
Consider the 2n×2n-matrix Z(e1,e2, . . . ,e2n) whose columns are the vectors e1,e2, . . . ,e2n spanning

P(e1, . . . ,e2n).
For each m ∈ Z>0 let Matm(R), respectively Matm(Q), be the space of real, respectively rational,

m×m-matrices.
Let S ⊂ Mat2n(R) be the set of matrices Z ∈ Mat2n(R) such that for all λ ∈ R>0

λZt
(

0 In

−In 0

)
Z /∈ Mat2n(Q).

(Here In is the identity n×n-matrix.)

Lemma 11.10
The set S is dense in Mat2n(R).

Proof of Lemma 11.10:
If Z has the form (

A B
C D

)
,
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where A,B,C,D ∈ Matn(R), then

λZt
(

0 In

−In 0

)
Z =

(
AtC−CtA AtD−CtB
BtC−DtA BtD−DtB

)
.

Since n > 1, the set of Z ∈ Mat2n(R) such that A,C ∈ Matn(Q) and BtD−DtB /∈ Matn(Q) is dense in
Mat2n(R) and also lies in S. Thus, S is dense in Mat2n(R).

This proves the lemma.

Since S ⊂ Mat2n(R) is a dense set, it suffices to prove the corollary only in the case when
Z(e1,e2, . . . ,e2n) lies in S.

Indeed, if Vol (λP(e1, . . . ,e2n) ,ω0) < Vol(T2n,ω) for some λ > 0 and some Kähler-type form ω

on T2n, then there exists a basis e′1, . . . ,e
′
2n of R2n such that Z(e′1,e

′
2, . . . ,e

′
2n) ∈ S, the parallelepiped

P(e′1, . . . ,e
′
2n) contains the parallelepiped P(e1, . . . ,e2n) and has only slightly bigger volume than it,

so that Vol(λP(e′1, . . . ,e
′
2n),ω0) < Vol(T2n,ω). If λP(e′1, . . . ,e

′
2n) admits a Kähler-type, or respec-

tively an ε-tame, embedding into (T2n,ω), then the composition of this embedding with the inclu-
sion λP(e1, . . . ,e2n) → λP(e′1, . . . ,e

′
2n) is a Kähler-type, or respectively an ε-tame, embedding of

λP(e1, . . . ,e2n) into (T2n,ω).
Now, in view of Corollary 11.7, it suffices to show that for any P(e1, . . . ,e2n), such that

Z(e1,e2, . . . ,e2n) ∈ S, there exists an irrational Kähler-type symplectic form ω on T2n satisfying the
following condition: for any λ > 0, such that Vol (λP(e1, . . . ,e2n))< Vol(T2n,ω), there exists a Kähler-
type embedding P(e1, . . . ,e2n)→ (T2n,ω).

Pick P(e1, . . . ,e2n), such that Z(e1,e2, . . . ,e2n) ∈ S and let us construct such an ω .
Without loss of generality, assume that Vol (λP(e1, . . . ,e2n) ,ω0) = 1.
Consider the integral lattice Λ := SpanZ{e1, . . . ,e2n} ⊂R2n. The fundamental domain of Λ is exactly

P(e1, . . . ,e2n). The space R2n/Λ is a torus and the form ω0 on R2n induces a Kähler-type symplectic form
on R2n/Λ of total volume 1 that will be also denoted by ω0. The matrix Z(e1,e2, . . . ,e2n) induces a linear
map R2n → R2n mapping Z2n to Λ. This map induces a diffeomorphism F : T2n = R2n/Z2n → R2n/Λ.
Since Z(e1,e2, . . . ,e2n) ∈ S, the form ω := F∗ω0 is an irrational Kähler-type form on T2n of total volume
1.

For any 0 < λ < 1 the inclusion λP(e1, . . . ,e2n)→ (R2n/Λ,ω0) is a Kähler-type embedding. This
embedding is holomorphic with respect to the complex structure on R2n/Λ induced by the standard
complex structure J0 on R2n. The composition of this embedding with F−1 is then a Kähler-type
embedding λP(e1, . . . ,e2n)→ (T2n,ω) holomorphic with respect to the linear complex structure F∗J0 on
T2n.

Thus, for any 0 < λ < 1 there exists a Kähler-type embedding λP(e1, . . . ,e2n) → (R2n/Λ,ω0),
provided Z(e1,e2, . . . ,e2n) ∈ S.

This finishes the proof of the corollary in the case where W is the disjoint union of k identical copies
of a parallelepiped.

Let us prove Corollary 3.31. We recall it here.
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Corollary 11.11 (= Corollary 3.31)
Assume:

• M is a smooth manifold underlying a K3 surface.

• W :=
⊔k

i=1Wi is a disjoint union of k identical copies of a parallelepiped

P(e1, . . . ,e4) :=

{
4

∑
j=1

s je j,0 ≤ s j ≤ 1, j = 1, . . . ,4

}
,

where e1, . . . ,e4 is a basis of the vector space R4.

• ε > 0.

Then there exists a Diff+(M)-invariant open dense set of Kähler-type symplectic forms on M,
depending on W and ε and containing, in particular, all irrational Kähler-type symplectic forms on M, so
that for each ω ′ in this set νT,ε(M,ω ′,W) = 1, meaning that ε-tame embeddings of λW into (M,ω ′) are
unobstructed.

Proof of Corollary 11.11 (=Corollary 3.31):
Consider the integral lattice Λ := SpanZ{2e1,2e2,2e3,2e4} ⊂ R4. The parallelepiped P(e1, . . . ,e4)

is the fundamental domain of the lattice Λ/2.
Recall the following construction by Kummer of a K3 surface – see e.g. [Bea2, p.55].
Consider the torus T4 := R4/Λ and let π : R4 → T4 be the projection. Equip the torus T4 with the

complex structure J0 and the symplectic structure ω0 induced by the standard complex and symplectic
structures on R4. The reflection with respect to the origin of R4 defines an involution of R4, which in
turn defines a holomorphic and symplectic involution ι : (T4,J0,ω0)→ (T4,J0,ω0). The involution ι has
16 fixed points – these are exactly the points of T4 that are the images under π of the points in R4 all
of whose coordinates with respect to the basis {2e1,2e2, . . . ,2e2n} are either 0 or 1/2. Let (T̃4, J̃0) be
the complex blow-up of (T4,J0) at these 16 points. The involution ι lifts to a holomorphic involution
ι̃ : T̃4 → T̃4. Then M := T̃4/ι̃ , equipped with the complex structure induced by J̃0, is a complex manifold
which is, in fact, a K3 surface (called a Kummer surface). Denote by I the complex structure on M
induced by J̃0.

The complex manifold (M, I) can also be obtained as follows: The space T4/ι is a complex orbifold
with 16 isolated singular orbifold points x1, . . . ,x16. Denote by J0 the complex structure on T4/ι induced
by J0. Then (M, I) is the smooth complex manifold obtained by the complex blow-up of (T4/ι ,J0) at
x1, . . . ,x16. Let pr : T4 → T4/ι and Π : M → T4/ι be the natural projections. The form ω0 on T4 is
ι-invariant and induces an orbifold Kähler form ω0 on the complex orbifold T4/ι which is a smooth
Kähler form outside the singularities.

The points x1, . . . ,x16 ∈T4/ι lie on the boundary of (pr◦π)(P(e1, . . . ,e4)). The interior Int P(e1, . . . ,e4)
of P(e1, . . . ,e4) projects diffeomorphically onto its image under pr ◦π and is an open dense subset of
T4/ι . Consequently, pr◦π : Int P(e1, . . . ,e4)→T4/ι is an embedding which is holomorphic with respect
to J0 and symplectic with respect to ω0. The map F := Π−1 ◦ pr ◦π : Int P(e1, . . . ,e4)→ M is then an
I-holomorphic embedding.
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Let 0 < λ < 1. Move λP(e1, . . . ,e4) by a parallel translation into the interior of
P(e1, . . . ,e4) and then map it by F into M. Denote the resulting map by f : λP(e1, . . . ,e4) → M. It
is an I-holomorphic embedding.

Following the proof of [EV2, Thm. 3.6] (or, alternatively, using Proposition 5.16), one can find
rational cohomology classes bi ∈ H2(Π−1(xi);Q), i = 1, . . . ,16, so that for any ε > 0 and any sufficiently
small 0 < ε1, . . . ,ε16 < ε , there exist a Kähler form ωε on (M, I) and sufficiently small neighborhoods
Uxi,ε,λ of Π−1(xi), i = 1, . . . ,16, in M with the following properties:

• Uxi,ε,λ ∩ f (λP(e1, . . . ,e4)) = /0, i = 1, . . . ,16.

• The form ωε coincides with Π∗ω0 outside
⋃16

i=1Uxi,ε,λ .

• [ωε ] = Π∗[ω0]+∑
16
i=1 εibi.

• Vol(T4/ι ,ω0)> (1− ε)Vol(M,ωε).

If the vector (ε1, . . . ,ε16) ∈ R16 is not a real multiple of a vector in Q16, the cohomology class

[ωε ] = Π
∗[ω0]+

16

∑
i=1

εibi ∈ H2(M;R)

is a not a real multiple of a rational cohomology class, meaning that ωε is irrational.
Our construction implies that f : λP(e1, . . . ,e4) → (M,ωε) is a Kähler-type embedding which is

holomorphic with respect to I and

Vol (λP(e1, . . . ,e4),ω0) = λ
4Vol (P(e1, . . . ,e4),ω0) =

= λ
4Vol(T4/ι ,ω0)> λ

4(1− ε)Vol(M,ωε).

For any δ > 0 we can choose λ < 1 sufficiently close to 1 and ε > 0 sufficiently small so that
λ 4(1− ε)> 1−δ . Then

f : λP(e1, . . . ,e4)→ (M,ωε)

is a Kähler-type embedding and

Vol(λP(e1, . . . ,e4),ω0)/Vol(M,ωε)≥ 1−δ .

By Corollary 11.7, this implies the corollary.

12 Hyperkähler case – proofs

As we mentioned in Section 3.5, the results of Section 3.4 generalize to the IHS-hyperkähler case. In
this section we explain how the proofs of the results in the K3 case should be adjusted for general
IHS-hyperkähler manifolds.

Let M be a closed connected and simply-connected manifold carrying IHS-hyperkähler structures.
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Recall from Section 3.5 that in the IHS-hyperkähler case the words “Kähler-type" should be re-
placed everywhere by the words “IHS-hyperkähler-type". Accordingly, in this section we will use
the same notation as in Section 10.2 for IHS-hyperkähler-type objects as for Kähler-type ob-
jects. In particular, CK(M) will denote the space of IHS-hyperkähler-type complex structures,
Teich(M) = CK(M)/Diff0(M) the Teichmüller space of IHS-hyperkähler-type complex structures
etc.; all the symplectic forms and complex structures will be assumed to be of IHS-hyperkähler-type.

For general IHS-hyperkähler manifolds:

• The Teichmüller space Teich(M) = CK(M)/Diff0(M) has the structure of a (non-Hausdorff)
complex manifold for the same reasons as in Section 10.2 (see [Cat]).

• Instead of the intersection form one should consider the Bogomolov-Beauville-Fujiki (BBF)
symmetric bilinear form q on H2(M;R) (see [Bea1], [Fu]) – for K3 surfaces the intersection
form and the BBF form coincide, up to a multiplicative factor. The BBF form is a primitive
integral quadratic form of signature (3,b2 − 3), where b2 = dimR H2(M;R) > 0. The space
Gr++(H2(M;R)) is defined then using the BBF form q.

We will use ⊥ to denote orthogonal complements with respect to q.

• Part A of the Torelli theorem (Theorem 10.12) remains true for IHS-hyperkähler manifolds – see
[Ver6].

• In the definition of S(M, I), for I ∈ CK(M), (−2)-classes should be replaced by the so-called MBM
cohomology classes in H2(M;Z) defined in [AmV1]. With S(M, I) defined in this way, Theorem
10.13 remains true for general IHS-hyperkähler manifolds.

• The analogues of Theorem 10.14 and Proposition 10.16 remain true for general IHS-hyperkähler
manifolds.

Let ω be an IHS-hyperkähler-type symplectic form on M.
The set Dω is then defined literally as in Section 10.2 with (−2)-classes being replaced by the MBM

classes. Proposition 10.17 and Proposition 10.18 remain true in this case – in their proofs one should
replace 19 by b2 −3, 18 by b2 −4, and (−2)-classes by MBM classes [AmV1].

Next, let us state the analogue of Proposition 10.20 in the IHS-hyperkähler case.

Proposition 12.1
The symplectic form ω is compatible with a Campana-simple IHS-hyperkähler-type complex structure

on M if and only if ω is irrational. In this case, for any connected component C0 of CK(M) compatible
with ω the set TeichC0(M,ω)∩Teichs(M) of Campana-simple structures lying in TeichC0(M,ω) is a
dense connected subset of TeichC0(M,ω).

The proof of Proposition 12.1 that we are going to give will not be a direct generalization of the proof
of Proposition 10.20 and requires a number of preliminaries.

Consider an IHS-hyperkähler-type structure h = {I1, I2, I3,ω1,ω2,ω3} on M. For any a,b,c ∈ R,
a2 +b2 + c2 = 1, the tensor aI1 +bI2 + cI3 is a complex structure of hyperkähler type on M. We will call
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any such aI1 +bI2 +cI3 a complex structure induced by h. Clearly, all complex structures induced by h
lie in the same connected component of CK(M) – we will say that this connected component is favored
by h.

Following [Ver2], we say that a closed subset Z ⊂ M is trianalytic (with respect to h), if Z is a
complex subvariety of (M, I) for each complex structure I induced by h.

Theorem 12.2 [Ver2, Thm. 4.1]
Let a ∈ H∗(M;Q), a ̸= 0.
Then a is Poincaré-dual to the fundamental class [Z] of a trianalytic Z ⊂ M if and only if a is invariant

with respect to the action of any induced complex structure on H∗(M;Q).

Let C0 be a connected component of CK(M).
Let Z be a closed subvariety of M for a certain (IHS-hyperkähler-type) complex structure on M

lying in C0. Following [Kur, SolV], we say that Z is absolutely trianalytic (with respect to C0) if the
cohomology class Poincaré-dual to the fundamental class of Z is of type (p, p) for all complex structures
I ∈ C0. By Theorem 12.2, such a manifold is trianalytic with respect to any IHS-hyperkähler structure
favoring C0.

Given a ∈ H∗(M;Q), a ̸= 0, denote by TC0,a ⊂ TeichC0(M) the set of all [I] ∈ TeichC0(M) such that
a ∈ H1,1

I (M;R). It follows e.g. from the Torelli theorem for hyperkähler manifolds [Ver6] that TC0,a is an
analytic submanifold of TeichC0(M) and Per(TC0,a) = Gr++

(
a⊥
)
.

For a real vector space W equipped with a non-degenerate indefinite quadratic form we denote by
SO+(W ) the identity component of SO(W ). Similarly, SO+(p,q) stands for the identity component of
the Lie group SO(p,q).

For the proof of Proposition 12.1 we will need the following algebraic lemma.

Lemma 12.3
Let W be a real vector space equipped with a non-degenerate quadratic form q of signature (2, l).
Consider the set F(W ) of F ∈ SO+(W ) fixing pointwise a linear subspace U ⊂ W , dimRU =

dimRW −2 whose orthogonal complement is a positive 2-dimensional plane in W .
Then the set F(W ) generates SO+(W ).

Proof of Lemma 12.3:
Let N be the subgroup of SO+(W ) generated by F(W ). Clearly, N is normal.
Assume l ̸= 2. Then the group SO+(W ) is a connected simple Lie group (in the sense of Lie theory).

Therefore it follows from [Rag] that any normal subgroup of SO+(W ) is either the whole SO+(W ) or
is contained in the center of SO+(W ) (which is discrete). Hence, N = SO+(W ), meaning that F(W )
generates SO+(W ) for l ̸= 2.

Let us consider the case l = 2 – i.e., the case when q has signature (2,2). Identify (W,q) with
the space Mat2(R) of real 2×2-matrices equipped with the bilinear form ⟨A,B⟩ = −tr(AJBJ), where

J =

(
0 −1
1 0

)
. Consider the following action of SL(2,R)×SL(2,R) on W ∼= Mat2(R): each h1×h2 ∈

SL(2,R)×SL(2,R) acts on A ∈ Mat2(R) by A 7→ h1Ah−1
2 . This action preserves the bilinear form and
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induces a homomorphism P : SL(2,R)× SL(2,R)→ SO+(W ) whose kernel is {±Id}. The subgroup
P−1(N)⊂ SL(2,R)×SL(2,R) is normal. The Lie group SL(2,R)×SL(2,R) is a connected semi-simple
Lie group. Therefore it follows from [Rag] that any normal subgroup of SL(2,R)×SL(2,R) which is not
the whole SL(2,R)×SL(2,R) is contained either in SL(2,R)×{±Id} or in {±Id}×SL(2,R).

Let us show that P−1 (F(W )) ⊈ SL(2,R)×{±Id} and consequently P−1(N) ⊈ SL(2,R)×{±Id}
(the claim P−1(N)⊈ {±Id}×SL(2,R) is proved similarly). Indeed, if an element h× Id ∈ SL(2,R)×
SL(2,R) is sent by P into F(W ), then its action on Mat2(R) fixes a two-dimensional subspace of Mat2(R).
This easily implies that h ∈ SL(2,R) has a two-dimensional eigenspace for the eigenvalue 1, meaning
that h = Id. Hence, P−1 (F(W ))⊈ SL(2,R)×{±Id} and consequently P−1(N) = SL(2,R)×SL(2,R)
and N = SO+(W ), meaning that F(W ) generates SO+(W ) also for l = 2.

This finishes the proof of the lemma.

Now we are ready to prove Proposition 12.1.

Proof of Proposition 12.1:
If the cohomology class [ω] is rational, then by part 1 of Remark 9.1, there are no Campana-simple

complex structures compatible with ω .
Assume that ω is irrational and C0 is a connected component of CK(M) compatible with ω .
The analogue of Proposition 10.18 in the IHS-hyperkähler case implies that TeichC0(M,ω) is a dense

connected subset of the analytic subvariety TC0,[ω] of TeichC0(M). Consequently, for each a ∈ H∗(M;Q),
a ̸= 0, there are only two possible options:
(1) TC0,a ∩TC0,[ω] = TC0,[ω], and consequently TC0,a ∩TeichC0(M,ω) = TeichC0(M,ω),
(2) TC0,a ∩TC0,[ω] is a proper (possibly empty) complex subvariety of TC0,[ω] and consequently TC0,a ∩
TeichC0(M,ω) is a proper complex subvariety of TeichC0(M,ω).

Lemma 12.4
Assume Z ⊂ M is a complex subvariety of (M, I) (some complex structure I ∈ C0) which is not

absolutely trianalytic with respect to C0. Let a ∈ Heven(M;Q) be the cohomology class Poincaré-dual to
[Z].

Then TC0,a ∩TC0,[ω] ⫅̸ TC0,[ω] (meaning that option (2) holds for a).

Proof of Lemma 12.4:
We start with a number of preparations.
Given I ∈ C0 and t ∈ R, consider the Hodge rotation map H∗(M;C)→ H∗(M;C) that acts on each

H p,q
I (M;C) as multiplication by e

√
−1 (p−q)t . Such a map preserves H∗(M;R) and its fixed point set

is exactly the union of H p,p
I (M;C) for all p. We will view the action of this map on H∗(M;R) as an

element of GL(H∗(M;R)) and denote it by ρI(t) : H∗(M;R)→ H∗(M;R). The restriction of each ρI(t)
to H2(M;R) preserves the BBF form q and lies in SO+

(
H2(M;R)

)
. The maps ρI(t)|H2(M;R), t ∈ R, are

exactly the maps that act trivially on the subspace H1,1
I (M;R) and rotate its orthogonal complement,

which is the positive 2-dimensional plane (H2,0
I (M;C)⊕H0,2

I (M;C))∩H2(M;R).
Denote by G ⊂ GL(Heven(M;R)) the subgroup generated by ρI(t)|Heven(M;R) for all I ∈ C0 and t ∈ R.

The restriction to H2(M;R) defines a homomorphism G → SO+
(
H2(M;R)

)
. It follows from [Ver3, Thm.
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2.2] and [Ver1, Corollary 8.2] that this homomorphism is, in fact, an isomorphism. (On Hodd(M) the
group generated by ρI(t), for all I ∈ C0 and t ∈ R, acts as the identity component of Spin(H2(M;R)),
with the center of the spinor group acting as − Id.)

Denote by G[ω] ⊂ G the subgroup generated by all Hodge rotation maps ρI(t), t ∈ R, I ∈ C0, [I] ∈
TC0,[ω]. Each such ρI(t) fixes [ω] because [ω] ∈ H1,1

I (M;R). Hence, [ω] is fixed by G[ω]. Thus, G[ω]

lies in the stabilizer of [ω] in G ∼= SO+
(
H2(M;R)

)
. The latter stabilizer is isomorphic to SO+([ω]⊥).

Note that the restriction of the BBF form q to [ω]⊥ ⊂ H2(M;R) has signature (2,b2 −3). Now Lemma
12.3 yields that the maps ρI(t)|H2(M;R), t ∈ R, [I] ∈ TC0,[ω], generate the stabilizer. In other words, G[ω]

coincides with the stabilizer of [ω] in G.
For the class a ∈ Heven(M;Q) given in the hypothesis of the lemma, denote by Ga the stabilizer of a

in G.
Now we are ready to prove the lemma.
Assume, by contradiction, that TC0,[ω] ⊂ TC0,a, meaning that option (1) above, and not (2), holds for a.

Then a is of type (p, p) for all complex structures I ∈ C0 such that [I] ∈ TC0,[ω]. In particular, a is fixed by
ρI(t) for all such I and all t ∈ R. Thus, G[ω] fixes a or, in other words,

SO+(2,b2 −3)∼= G[ω] ⊂ Ga ⊂ G ∼= SO+(3,b2 −3).

By [EV1, Lem. 9.9], any intermediate subgroup G[ω] ⊂ H ⊂ G is equal either to G[ω] or to G. This
implies that Ga equals either G[ω] or G. Since [ω] is not rational, [EV1, Lem. 9.10] yields that Ga ̸= G[ω].
Since Z is not absolutely trianalytic, there exists I ∈ C0 such that a /∈ H1,1

I (M;R) and consequently a
is not fixed by ρI(t) ∈ G for t ̸= 0. Therefore ρI(t) /∈ Ga and Ga ̸= G. This yields a contradiction and
finishes the proof of the lemma.

Now let us finish the proof of Proposition 12.1.
Let A⊂ H∗(M;Q)\{0} be the set of all a ∈ H∗(M;Q), a ̸= 0, for which TC0,a ∩TC0,[ω] is a proper

(possibly empty) complex subvariety of TC0,[ω] and consequently TC0,a ∩ TeichC0(M,ω) is a proper
complex subvariety of TeichC0(M,ω). By Lemma 12.4, A includes, in particular, all a ∈ H2(M;Q) that
are Poincaré-dual to the fundamental classes of not absolutely trianalytic subvarieties (with respect to C0).

The set
S := TeichC0(M,ω)\

⋃
a∈A

(
TC0,a ∩TeichC0(M,ω)

)
is connected and dense in TeichC0(M,ω). For any I ∈ C0 such that [I] ∈ S, the complex manifold
(M, I) can contain only absolutely trianalytic subvarieties. By [EV1, Lem. 7.9], the union of all such
subvarieties of (M, I) is of measure zero, meaning that I is Campana-simple and [I] ∈ TeichC0(M,ω)∩
Teichs(M). Hence, S ⊂ TeichC0(M,ω)∩Teichs(M)⊂ TeichC0(M,ω). Since S is connected and dense
in TeichC0(M,ω), so is TeichC0(M,ω)∩Teichs(M).

This finishes the proof of the proposition.

We are now ready to discuss the analogue of Theorem 3.22 in the IHS-hyperkähler case, as described
in Section 3.5.

The proof of the claims of Theorem 3.22 in the IHS-hyperkähler case (apart from the claim on
the transitivity of the SympH(M,ω)-action) is the same as in the K3 case – one just needs to use the
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generalizations of the results of Section 10.2 to the IHS-hyperkähler case discussed above (instead of the
corresponding results for the K3 surfaces) and use Theorem 9.3 in the simply-connected case involving
Campana-simple complex structures.

As for the transitivity of the action of SympH(M,ω), we cannot say anything in the IHS-hyperkähler
case, as we have no analogue of part B of Theorem 10.12 for IHS-hyperkähler manifolds.

Finally, let us discuss the results on tame embeddings into (M,ω) for an IHS-hyperkähler-type form
ω .

Recall from Section 3.5 that there are two possibilities to define tame embeddings into such an (M,ω).
One possibility is to use Kähler-type complex structures tamed by ω . Another possibility is to use instead
IHS-hyperkähler-type complex structures tamed by ω .

The claim νT,ε(M,ω1,W) = νT,ε(M,ω2,W) of Theorem 3.27 holds for both definitions of νT,ε , as
long as ω1 and ω2 lie in the same connected component of the space of IHS-hyperkähler-type symplectic
forms on M. Indeed, it is easy to see that Proposition 11.5 holds for both definitions of νT,ε . The relevant
claim about the density of the Diff+(M)-orbits of the form ω1, ω2 in the space of forms of the same
volume in the same connected component of the space of IHS-hyperkähler-type symplectic forms on M
follows from [EV1, Thm. 9.2].

A Appendix

In this section we discuss various well-known facts concerning the dependence of the Hodge decomposi-
tion on the complex structure, the deformations of complex structures, and the Moser method, that we
used in the paper and for most of which we could not find a direct reference in the literature.

A.1 Dependence of the Hodge decomposition on the complex structure

In this section we prove two auxiliary facts about Kähler manifolds. These facts must have been known
to the experts but we have not been able to find a reference to them.

Assume M, 2n = dimR M, is a closed manifold admitting Kähler structures – i.e., CK(M) ̸= /0. Recall
that we use the C∞-topology on CK(M).

For each l = 0,1, . . . ,2n denote by Al(M) the space of smooth complex-valued differential l-forms
on M. For each I ∈ CK(M) let

Al(M) =⊕p+q=lA
p,q
I (M)

be the (p,q)-decomposition of Al(M).
Let Ω

1,0
I (M) be the space of I-holomorphic 1-forms on M, with respect to I.

By Hodge theory, dimC H1(M;C)= 2dimC H1,0
I (M)= 2dimC H0(Ω1

I (M)). Let m := dimC H1(M;C)/2.

Proposition A.1
Let J ∈ CK(M).
Then there exists a neighborhood W of J in CK(M) with the following property:
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For each I ∈W one can choose a basis θ1(I), . . . ,θm(I) of H0(Ω1
I (M)) continuously with respect to I.

Proof of Proposition A.1:
Pick a J-invariant Riemannian metric g on M. Then there exists a neighborhood W of J in CK(M)

such that for any I ∈W sufficiently close to J we have an I-invariant Riemannian metric (g+ I∗g)/2
that depends continuously on I and coincides with g for I = J. Together with I ∈W such an I-invariant
Riemannian metric defines a Hermitian metric hI on (M, I) that depends continuously on I.

For each I ∈ W and each l = 0,1, . . . ,2n the Hermitian metric hI allows to define the Laplace-
Beltrami operator on Al(M) that will be denoted ∆l

I : Al(M) → Al(M). This is an elliptic operator.
Denote the kernel of ∆l

I (i.e., the space of harmonic l-forms with respect to ∆l
I) by Hl

I(M). Then
dimCH

l
I(M) = dimC H l(M;C). Also, H1

I (M)∩A1,0
I (M) = Ω

1,0
I (M). These results follow from the

classical Hodge theory (see e.g. [Wel, Sec. IV.4, IV.5]).
Thus we have obtained that for each l the operators ∆l

I form a family of elliptic operators depending
continuously on I ∈W so that the kernels of these operators all have the same dimension. Then these
kernels – i.e., the spaces Hl

I(M), I ∈W – form a continuous vector bundle over W. This follows from a
standard argument essentially contained in [At2, Lem. 2.1]. Namely, one passes to a Hilbert completion
of Al(M) and extends the continuous family of elliptic operators ∆l

I , I ∈W, to a continuous family of
Fredholm operators that, by elliptic regularity, have the same kernels, all of the same dimension. An easy
functional analysis argument implies then that the kernels of these Fredholm operators form a continuous
vector bundle (in fact, we only need the operators to be bounded with a closed image and these conditions
are satisfied by any Fredholm operator).

Since the spaces H1
I (M), I ∈W, form a continuous vector bundle over W, so do their I-invariant parts

– i.e., the spaces Ω
1,0
I (M) – which are all of the same dimension m. This readily implies the proposition.

A.2 Deformation families of complex structures

Let (M, I) be a complex manifold.
Assume X, B are connected (not necessarily Hausdorff) smooth manifolds. Let s0 ∈B be a marked

point. Let X→B be a smooth map.
If X → B is a proper fiber bundle whose fibers are equipped with complex structures depending

smoothly on the fiber and the fiber over s0 is (M, I), we say that X→ (B,s0) is a smooth deformation
family, or a smooth deformation of (M, I).

If X, B are complex manifolds and the map X → B is a proper holomorphic submersion, then it
is a fiber bundle (by Ehresmann’s lemma, the fibration admits smooth local trivializations). The fibers
of X→ B are then closed complex submanifolds of X that are diffeomorphic to M. Denote by Ms the
fiber over s ∈ B and denote by Is the complex structure on Ms induced by the complex structure on X.
Assume that Is0 = I. In this case we say that X→ (B,s0) is a complex-analytic deformation family, or
a complex-analytic deformation of (M, I).

Given a complex structure I on M, a smoothly trivial smooth (respectively complex-analytic) defor-
mation family M ×U → U of (M, I) over an open set U ⊂ Cm (respectively U ⊂ Rm), s0 = 0 ∈ U , is
called a local smooth (respectively complex-analytic) deformation of I. It can be viewed as a smooth
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(respectively complex analytic) family {Is}s∈U , I0 = I.
Assume {Is}s∈U , I0 = I, is a smooth local deformation of a Kähler-type complex structure I on M.

The Kodaira-Spencer stability theorem [KoS2] says that for any symplectic form ω on M compatible
with I there exists a neighborhood U ′ of 0 in U and a smooth family {ωs}s∈U ′ , ω0 = ω , of symplectic
forms ωs on M compatible with Is for each s ∈U ′; in particular, each complex structure Is, s ∈U ′, is of
Kähler type. It follows from the Kodaira-Spencer stability theorem (see [EV1, Thm. 5.6]) that there
exists a neighborhood U ′′ ⊂U ′ of 0 so that for each s ∈U ′′ the cohomology class [ω]1,1Is

is Kähler with
respect to Is.

Proposition A.2
The space CK(M) is locally C∞-path-connected.

Proof of Proposition A.2:
Kuranishi’s theorem [Ku1], [Ku2], [Ku3] implies that the Diff0(M)-action on the space of complex

structures on M admits local slices that are finite-dimensional analytic spaces. This implies that the space
of complex structures on M is locally path-connected. Therefore, since Diff0(M) acts trivially on the
cohomology and preserves CK(M), the Kodaira-Spencer stability theorem yields that the space CK(M)
is locally C∞-path-connected. This proves the proposition.

A.3 Relative version of Moser’s method

Here we recall the following (well-known) relative version of Moser’s method [Mos].

Proposition A.3
Let N be a closed manifold.

I. Assume that X ⊂ N is a closed domain with a piecewise-smooth boundary, such that H1(X ;R) = 0.
Let {Ωt}, t ∈ [0,1], be a smooth family of cohomologous symplectic forms on N, so that all the forms

Ωt , t ∈ [0,1], coincide on a neighborhood of X .
Then there exists an isotopy {φt : N → N}0≤t≤1, φ0 = Id, such that for each t ∈ [0,1] the diffeomor-

phism φt is identity on a neighborhood of X and φ ∗
t Ω0 = Ωt .

II. Assume that X ⊂ N is a proper submanifold. Let {Ωt}, t ∈ [0,1], be a smooth family of cohomologous
symplectic forms on N, so that all the forms Ωt |X , t ∈ [0,1], are non-degenerate.

Then there exists an isotopy {φt : N → N}0≤t≤1, φ0 = Id, such that φt(X) = X and φ ∗
t Ω0 = Ωt for

each t ∈ [0,1].

III. Assume that N = CPn ×CP1, X1 := CPn−1 ×CP1 ⊂ N, X2 := CPn ×pt ⊂ N. Let {Ωt}, t ∈ [0,1], be
a smooth family of cohomologous symplectic forms on N, so that all the forms Ωt |Xi , i = 1,2, t ∈ [0,1],
are non-degenerate.

Then for every open neighborhood U of X1 ∩X2 there exists an isotopy {φt : N → N}0≤t≤1, φ0 = Id,
such that
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• φt(X1 ∪X2) = X1 ∪X2,

• φ ∗
t Ω0 = Ωt outside U for each t ∈ [0,1].

Proof of Proposition A.3:
Let us prove part I of the proposition.
The proof follows the lines of the proof of the standard, absolute, version of the same result, as long

as one can find a smooth family {λt}, t ∈ [0,1], of 1-forms on N so that for all t ∈ [0,1]

dλt =
d
dt

Ωt ,

and all the forms λt , 0 ≤ t ≤ 1, vanish on a neighborhood of X .
In order to find such a family, pick first a smooth family {µt}, t ∈ [0,1], of 1-forms on N satisfying

dµt =
d
dt

Ωt

for all t ∈ [0,1] (this can be done e.g. using Hodge theory – see e.g. [McDS, Thm. 3.2.4]). Note that all
the forms dµt , 0 ≤ t ≤ 1, vanish on a neighborhood of X . Now, since H1(X ;R) = 0, it is easy to show
that there exists a smooth family {Ft}, t ∈ [0,1], of functions defined on a neighborhood U of X so that
dFt = µt on U for all t ∈ [0,1]. Extend these functions from possibly a smaller neighborhood U ′ ⊂U of
the set X to a smooth family of functions on N. By a slight abuse of notation, denote the latter family of
functions on N also by {Ft}, t ∈ [0,1]. Then {λt := µt −dFt}, t ∈ [0,1], is the wanted family of 1-forms
on N.

This finishes the proof of part I.
Part II is proved in [McDP, Cor. 4.1.B].
Part III is proved in [McDP, Prop. 4.1.C].
This finishes the proof of the proposition.

A.4 Alexander’s trick

Let W ⊂R2n be a compact domain with piecewise-smooth boundary that is starshaped with respect to the
origin.

Proposition A.4
Assume f : W → R2n is an embedding. Let ι : W → R2n be the inclusion map.
The following claims hold:

I. Let U ⊂ R2n be an open neighborhood W in R2n. Assume that the embedding f is symplectic.
If f is sufficiently C1-close to ι , then there exists a smooth family of symplectic embeddings

{ ft : W →U}0≤t≤1 so that f0 = ι , f1 = f . Moreover, all ft , t ∈ [0,1], can be made arbitrarily C∞-close to
ι , provided f is sufficiently C∞-close to ι .
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II. Assume that the embedding f is holomorphic, f (0) = 0, and f (W )⊂W . Then there exists a smooth
family of holomorphic embeddings { ft : W → W}0≤t≤1 so that f0 = ι , f1 = f and ft(0) = 0 for all
t ∈ [0,1].

Proof of Proposition A.4:
Let us prove part I.
If f is sufficiently C1-close to ι , then, composing f , if necessary, with a family of small affine

symplectomorphisms staring at Id, we may assume without loss of generality, that f (0) = 0 and d f (0) =
Id.

Consider the following family of maps {gt}0≤t≤1 defined on W :

gt(x) := g(tx)/t, if t ∈ (0,1],

g0 = ι .

If f is sufficiently C1-close to ι , then all the maps gt are symplectic embeddings taking values in U . The
family {gt}0≤t≤1 may not be smooth at t = 0 but for an appropriate smooth function χ : [0,1]→ [0,1],
χ(0) = 0, χ(1) = 1, the family {gχ(t)}0≤t≤1 is a smooth family of symplectic embeddings W → U
connecting f and ι . The construction clearly shows that all ft , t ∈ [0,1], can be made arbitrarily C∞-close
to ι , provided f is sufficiently C∞-close to ι . This finishes the proof of part I.

Let us prove part II. For C > 0 consider the following family of maps {gt}0≤t≤1 defined on W :

gt(z) := f (tz)/Ct, if t ∈ (0,1],

g0 := d f (0)/C.

For a sufficiently large C > 0 we have Imgt ⊂ W for all t ∈ [0,1]. The family {gt}0≤t≤1 may not be
smooth at t = 0 but for an appropriate smooth function χ : [0,1]→ [0,1], χ(0) = 0, χ(1) = 1, the family
{gχ(t)}0≤t≤1 is a smooth family of holomorphic embeddings (W,0)→ (W,0) connecting g0 and g1 = f/C.
If C > 0 is sufficiently large, the linear holomorphic embedding g0 can be easily connected by a smooth
family of holomorphic embeddings (W,0)→ (W,0) to Id/C and the latter can be connected to Id.

Corollary A.5
Let M2n be a manifold and ω a Kähler-type symplectic form on M. Let f : W → (M,ω) be a

Kähler-type/tame/ε-tame embedding (in the latter case we assume that M is closed).
Then any symplectic embedding f ′ : W → (M,ω) sufficiently C1-close to f is of Kähler-type/tame/ε-

tame, and there exists φ ∈ Symp0(M) such that φ ◦ f = f ′. The symplectomorphism φ can be made
arbitrarily C∞-close to Id provided f ′ is sufficiently C∞-close to f .

Proof of Corollary A.5:
Assume f extends to an I-holomorphic symplectic embedding f : U → (M,ω), where U is a neigh-

borhood of W in R2n and I is a complex structure on M with the relevant properties as needed for a
Kähler-type/tame/ε-tame embedding.

Let f ′ : W → (M,ω) be a symplectic embedding (extending to a symplectic embedding of an open
neighborhood of W ). If f ′ is sufficiently C1-close to f , then f ′(W ) ⊂ f (U) and f−1 ◦ f ′ : W →U is a
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symplectic embedding that can be made arbitrarily C1-close to the identity. By part I of Proposition
A.4, it can be connected to the inclusion ι : W → U by a smooth family of symplectic embeddings
W →U arbitrarily C∞-close to the identity, provided f ′ is sufficiently C∞-close to f . Composing these
embeddings with f , we get a smooth family of symplectic embeddings ft : W → (M,ω), 0 ≤ t ≤ 1,
connecting f and f ′. These embeddings can be made arbitrarily C∞-close to f , provided f ′ is sufficiently
C∞-close to f .

By a standard result concerning extension of symplectic isotopies (proved as [McDS, Thm. 3.3.1]),
there exists φ ∈ Symp0(M,ω) such that φ ◦ f = f ′. The symplectomorphism φ can be chosen to be
arbitrarily C∞-close to the identity, if the symplectic embeddings ft , 0 ≤ t ≤ 1, are sufficiently C∞-close to
f , which is true if f ′ is sufficiently C∞-close to f . The symplectic embedding f ′ is of Kähler-type/tame/ε-
tame because it is holomorphic with respect to the complex structure φ∗I on M satisfying the relevant
properties.

This finishes the proof of the corollary.
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