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Abstract: We study combinatorial inequalities for various classes of set systems: matroids,
polymatroids, poset antimatroids, and interval greedoids. We prove log-concave inequal-
ities for counting certain weighted feasible words, which generalize and extend several
previous results establishing Mason conjectures for the numbers of independent sets of
matroids. Notably, we prove matching equality conditions for both earlier inequalities and
our extensions.

In contrast with much of the previous work, our proofs are combinatorial and employ
nothing but linear algebra. We use the language formulation of greedoids which allows
a linear algebraic setup, which in turn can be analyzed recursively. The underlying non-
commutative nature of matrices associated with greedoids allows us to proceed beyond
polymatroids and prove the equality conditions. As further application of our tools, we
rederive both Stanley’s inequality on the number of certain linear extensions, and its equality
conditions, which we then also extend to the weighted case.

Key words and phrases: Combinatorial inequalities, Algebraic aspects of posets

1 Introduction

1.1 Foreword

It is always remarkable and even a little suspicious, when a nontrivial property can be proved for a
large class of objects. Indeed, this says that the result is “global”, i.e. the property is a consequence
of the underlying structure rather than individual objects. Such results are even more remarkable in
combinatorics, where the structures are weak and the objects are plentiful. In fact, many reasonable
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conjectures in the area fail under experiments, while some are ruled out by theoretical considerations
(cf. §16.1 and §17.1).

This paper is concerned with log-concavity results for counting problems in the general context of
posets, and is motivated by a large body of amazing recent work in area, see a survey by Huh [Huh18].
Surprisingly, these results involve deep algebraic tools which go much beyond previous work on the
subject, see earlier surveys [Bral5, Bre89, Bre94, Sta89]. This leads to several difficult questions, such
as:

o How far do these inequalities generalize?
o How do we extend/develop new algebraic tools to prove these generalizations?

We aim to answer the first question in as many cases as we can, both generalizing the inequalities to
larger classes of posets and strengthening these inequalities to match equality conditions which we also
prove. We do this by sidestepping the second question, or avoiding it completely.

There is a very long and only partially justified tradition in combinatorics of looking for purely
combinatorial proofs of combinatorial results. Although the very idea of using advanced algebraic
tools to prove combinatorial inequalities is rather mesmerizing, one wonders if these tools are really
necessary. Are they giving us a true insight into the nature of these inequalities that we were missing for
so long? Or, perhaps, the absence of purely combinatorial proofs is a reflection of our continuing lack of
understanding?

We posit that, in fact, all poset inequalities can be obtained by elementary means (cf. §1.21). We
show how this can be done for a several large families of inequalities, and intend to continue this work in
the future (see §17.17). There are certain tradeoffs, of course, as we need to introduce a technical linear
algebraic setup (see §1.20), which allows us to quickly reprove both classical and recently established
poset inequalities. The advantage of our approach is its flexibility and noncommutative nature, making it
amenable to extend and generalize these inequalities in several directions.

Of course, none of what we did takes anything away from the algebraic proofs of poset inequalities
which remained open for decades — the victors keep all the spoils (see Section 16). We do, however,
hope the reader will appreciate that our combinatorial tools are indeed more powerful than the algebraic
tools, at least in the cases we consider (cf. §§17.8-17.11).

1.2 'What to expect now

A long technical paper deserves a long technical introduction. Similarly, a friendly and accessible paper
deserves a friendly and accessible introduction. Naturally, we aim to achieve both somewhat contradictory
goals.

Below we present our main results and applications, all of which require definitions which are
standard in the area, but not a common knowledge in the rest of mathematics. We make an effort to have
the introduction thorough yet easily accessible, at the expense of brevity.!

In addition, rather than jump to the most general and thus most involved results, we begin slowly, and
take time to introduce the reader to the world of poset inequalities. Essentially, the rest of the introduction

'In an effort to streamline the presentation, some basic notation is collected in a short Section 2, which we encourage the
reader to consult whenever there is an apparent misunderstanding or ambiguity.
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can be viewed as an extensive survey of our own results interspersed with a few examples and some
earlier results directly related to our work. The reader well versed in the greedoid literature can speed
read a few early subsections.

We say very little about our tools at this stage, even though we consider them to be our main
contribution (see §1.20 and §1.21). These are fully presented in the following sections, which in turn are
followed by the proofs of all the results. As we mentioned above, our tools are elementary but technical,
and are best enjoyed when the reader is convinced they are worth delving into.

Similarly, in the introduction, we say the bare minimum about the rich history of the subject and the
previous work on poset inequalities. This is rather unfair to the many experts in the area whose names
and contributions are mentioned only at the end of the paper. Our choice was governed by the effort to
keep the introduction from exploding in size. We beg forgiveness on this point, and try to mitigate it by a
lengthy historical discussion in Section 16, with quick pointer links sprinkled throughout the introduction.

1.3 Matroids

A (finite) matroid M is a pair (X,J) of a ground set X, |X| = n, and a nonempty collection of independent
sets J C 2% that satisfies the following:

* (hereditary property)y SCT, T€J = SeJ,and
* (exchange property) S, T €3, |S|<|T| = FxeT\S st.S+xed.

Rank of a matroid is the maximal size of the independent set: rk(M) := maxgeg |S|. A basis of a matroid
is an independent set of size rk(M). Finally, let Iy := {S € J, [S| =k}, and let I(k) = ’Jk’ be the number
of independent sets in M of size k, 0 < k < rk(M).

Theorem 1.1 (Log-concavity for matroids, [AHK18, Thm 9.9 (3)], formerly Welsh—-Mason conjecture).
For a matroid M = (X,J) and integer 1 < k < rk(M), we have:

1(k)? > I(k—1) - 1(k+1). (1.1)

See §16.5 for the historical background. The log-concavity in (1.1) classically implies unimodality of
the sequence {I(k)}:

I0) <I(1) <...<I(k) > I(k+1) > ... > I(m), where m = rk(M).

It was noted in [Lenz11, Lem. 4.2] that other results in [AHK18] imply that the inequalities (1.1) are
always strict (see §16.6). Further improvements to (1.1) have been long conjectured by Mason [Mas72]
and were recently established in quick succession.

Theorem 1.2 (One-sided ultra-log-concavity for matroids, [HSW?22, Cor. 9], formerly weak Mason
conjecture). For a matroid M = (X,J) and integer 1 < k < tk(M), we have:

1(k)*> > (1 + ;{) I(k—1) I(k+1). (1.2)
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Theorem 1.3 (Ultra-log-concavity for matroids, [ALOV18, Thm 1.2] and [BH20, Thm 4.14], formerly
strong Mason conjecture). For a matroid M = (X,J), |X| = n, and integer 1 < k < rk(M), we have:

1(k)*> > (1 + }{) (1 + nik> I(k—1)1(k+1). (1.3)

Equation (1.3) is a reformulation of ultra-log-concavity of the sequence {I(k)}:

I(m)
()

can be viewed as the probability that random m-subset of X is independent in M.

i(k)? > i(k—1)-i(k+1), where i(m) :=

1.4 More matroids

For an independent set S € J of a matroid M = (X,J), denote by
Cont(S) :=={xeX\S : S+xeJ} (1.4)

the set of continuations of S. For all x,y € Cont(S), we write x ~gy when S+x+y ¢ J or when x =y.
Note that “~g” is an equivalence relations, see Proposition 4.1. We call an equivalence class of the
relation ~g a parallel class of S, and we denote by Par(S) the set of parallel classes of S.

For every 0 < k < tk(M), define the k-continuation number of a matroid M as the maximal number
of parallel classes of independent sets of size k:

p(k) := max{|Par(S)| : S€I}. (1.5)
Clearly, p(k) <n—k.

Theorem 1.4 (Refined log-concavity for matroids). For a matroid M = (X,J) and integer 1 < k < rk(M),

e have: )2 > (1 + ;{) (1 + p(k—ll)—1> I(k—1) I(k+1). (1.6)

Clearly, Theorem 1.4 implies Theorem 1.3. This is our first result of the long series of generalizations
that follow. Before we proceed, let us illustrate the power of this refinement in a special case.

Example 1.5 (Graphical matroids). Let G = (V,E) be a connected graph with |V| = N edges. The
corresponding graphical matroid Mg = (E,J) is defined to have independent sets to be all spanning
forests in G, i.e. spanning subgraphs without cycles. Then I(k) is the number of spanning forests with k
edges, bases are spanning trees in G, and tk(Mg) =N — 1.

Let k = N—2 in Theorem 1.4. Observe that p(N—3) < 3 since T — e — ¢’ can have at most three
connected components, for every spanning tree T in G and edges e,e’ € E. Then (1.6) gives:

I(N—2)? S 3< 1

3
21y =) 52 as N 1.7
IN=3)-I(N—1) = 2 +N—2> T ® T (4.9
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This is both numerically and asymptotically better than (1.3), cf. §17.12. For example, when |E| —N — oo,
we have:

IN-2)° e V) 51w vo
IN=3)-In—1) =" [E|—N+2 N—2 '

1.5 Weighted matroid inequalities

Let M = (X,J) be a matroid, and let @ : X — R be a positive weight function on the ground set X. We
extend the weight function to every independent set S € J as follows:

For all 1 <k < rk(M), define

Theorem 1.6 (Refined weighted log-concavity for matroids). Let M = (X,J) be a matroid on |X| =n
elements, let @ : X — R~ be a weight function, and let 1 < k < tk(M). Then:

Ip(k)* > (1 + }() <1 + p(k—ll)—l) Ip(k—1) Ip(k+1). (1.8)

Remark 1.7. In this theorem, the setup is more important than the result as it can be easily reduced to
Theorem 1.4. Indeed, note that one can take multiple copies of elements in a matroid M. This implies
the result for integer valued @. The full version follows by homogeneity and continuity. This natural
approach fails for the equality conditions as strict inequalities are not necessarily preserved in the limit,
and for many generalizations below where we have constraints on the weight function. See §16.11 for
some background.

1.6 Equality conditions for matroids
For a matroid M = (X,J) on |X| = n elements, define girth(M) := min{k : I(k) < (}) }. By analogy

with graph theory, girth of a matroid is the size of the smallest circuit in M.

Theorem 1.8 (Equality for matroids, [MNY21, Cor. 1.2]). Let M = (X,J) be a matroid on |X| =n
elements, and let 1 < k < tk(M). Then:

2 _ 1 ! -
I(k) <1 + k) (1 =+ - k) I[(k—1)I(k+1) (1.9)
if and only if girth(M) > (k+1).
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See §16.12 for some background on equality conditions. The theorem says that in order to have
equality (1.9), we must have probabilities i(k— 1) = i(k) = i(k+ 1) = 1. Now we present a weighted
version of Theorem 1.8. We say that weight function @ : X — R~ is uniform if ®(x) = w(y) for all
x,y€X.

Theorem 1.9 (Weighted equality for matroids). Let M = (X,J) be a matroid on |X| = n elements, let
1 <k <rk(M), and let @ : X — R~ be a weight function. Then:

1 1
Ip(k)2 = (14— ) (14+—) Ipk—1)Ipk+1) (1.10)
k n—k
if and only if girth(M) > (k+ 1), and the weight function @ is uniform.

The uniform condition in the theorem is quite natural for integer weight functions, as it basically says
that in order to have (1.10) all elements have to be repeated the same number of times. In other words,
weighted inequalities do not have a substantially larger set of equality cases.

Theorem 1.10 (Refined equality for matroids). Let M = (X,J) be a matroid, 1 < k < rk(M), and let
o : X — Ryg be a weight function. Then:

1 1
Ik = (1+ - ) (1 + ——— ) To(k—1) Ip(k+1 1.11
o = (14 1) (14 o ) otk 1) Tufh 1) (L
if and only if there exists s(k—1) > 0, such that for every S € Jy_; we have:
|Par(S)| = p(k—1), and (ME1)
Z o(x) = s(k—1)  forevery C & Par(S). (ME2)
x€C

Condition (ME1) says that the (k — 1)-continuation number is achieved on all independent sets
S € Jy—1. When the weight function is uniform, condition (ME2) is saying that all parallel classes
C € Par(S) have the same size.

1.7 Examples of matroids

First, we prove that the equality conditions are rarely satisfied for graphical matroids, see Example 1.5.
More precisely, we prove that the refined log-concavity inequality (1.7) is an equality only for cycles:

Proposition 1.11 (Equality for graphical matroids). Let G = (V,E) be a simple connected graph on
|V| = N vertices, and let 1(k) be the number of spanning forests with k edges. Then

I(N—2)2 3 1
IN_3)-IN_1) = 2 <1 + N—2> (1.12)

and the equality holds if and only if G is an N-cycle.
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We now show that the equality conditions in Theorem 1.10 have a rich family of examples (see §16.7
for more on these examples). The weight function is uniform in all these cases: @(x) =1 for every x € X.

Example 1.12 (Finite field matroids). Let I, be a finite field with ¢ elements, let m > 1, and let X = F7".
Let J be a set of subsets S C F' which are linearly independent as vectors. Finally, let M(m,q) = (X,J)
be a matroid of vectors in Fy' of rank m.

Let 1 <k <m andlet S € J;_y, so we have dimp, (S) = k— 1. For all parallel classes € € Par(S) we
then have | C| = ¢*~!. Therefore,

Par(s)| = T — gmr1 (1.13)
q
The conditions (ME1) and (ME2) are then satisfied with p(k—1) = ¢" %! — 1 and s(k—1) = g*~ 1.
We conclude that (1.6) is an equality for M(m,q), for all 1 < k < m. Curiously, the equality (1.13) is
optimal for matroids over F,, and we have the following result (see §10.6 for the proof).

Corollary 1.13. Let X CFy' be a set of n vectors which span Fy/, and let M = (X,J) be the correspond-
ing matroid of rank m = rk(M). Then, for all 1 < k < m, we have:

I(k)? > (1 + i) (1 + qufl_z> I(k—1)I(k+1).

Example 1.14 (Steiner system matroids). Fix integers t < m < n and a ground set X, with [X|=n. A
Steiner system Stn(t,m,n) is a collection B of m-subsets B C X called blocks, such that each z-subset
of X is contained in exactly one block B € B.

Let M(B) = (X,J) be a matroid with tk(M) = girth(M) = (¢ + 1), where the bases are (r+ 1)-
subsets of X that are not contained in any block of the Steiner system. It is easy to see that this indeed
defines a matroid, cf. §16.7. Note that (1.8) is trivially an equality for all 1 <k <¢.

Let S € J,_; be an independent set of size (r — 1). The parallel classes of S are given by Bj \
S,...,B¢\ S, where By,...,B; € B are blocks of the Steiner system that contain S, and ¢ = % Then
we have:

|Par(S)| = ¢, and |C|=m—t+1 forevery C & Par(S).

Since the choice of S is arbitrary, the conditions (ME1) and (ME2) are satisfied with p(r — 1) = ¢ and
s(t—1) =m—1t+ 1. We conclude that (1.6) is also an equality for k =1.

1.8 Morphism of matroids
For a matroid M = (X, J), the rank function f:2% — R~ is defined by

f(S) := max {|A| :ACS,A€T}.

Note that k(M) = f(X). There is an equivalent definition of a matroid in terms of monotonic submodular
rank functions, see e.g. [Wel76].
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Let M = (X,J) and N = (¥,J) be two matroids with rank functions f and g, respectively. Let
@ : X — Y be a function that satisfies

g(P(T)) — g(@(S)) < f(T)— f(S) forevery SCT CX. (1.14)

In this case we say that ® is a morphism of matroids, write ® : M — N. A subset S € J is said to be
a basis of @ if g(P(S)) = rk(N). In other words, S is contained in a basis of M, and ®(S) contains a
basis of N. Denote by B the set of bases of ® : M — N, and let By := BN7J,.

Let w: X — R- be a positive weight function on the ground set X. As before, for every 0 < k <
rk(M), let
Bo(k) = Z o(S), where o(S) = [] o).

SeBy xes

Theorem 1.15 (Log-concavity for morphisms, [EH20, Thm 1.3]). Let M = (X,J) and N = (Y,J) be
matroids, let n:= |X|, and let ® : M — N be a morphism of matroids. In addition, let @ : X — R~ be a
positive weight function, and let 1 < k < tk(M). Then:

1

By (k)? > (1 + k) <1 + nik) By (k—1)Bg(k+1). (1.15)

Note that when ¥ = {y} and N = (¥, 9) is defined by g(y) = 0, we have condition (1.14) holds
trivially and B = J. Thus, the theorem generalizes Theorem 1.3 to the morphism of matroids setting. We
now give the corresponding generalization of Theorem 1.6.

Recall the equivalence relation “~g” on the set Cont(S) C X \ S of continuations of S € J, see (1.4).
Similarly, recall the set Par(S) of parallel classes of S, see (1.5). For every 1 <k <rk(M), let

p(k) := max {|Par(S)| : S € By},
the maximum of the number of parallel classes of bases of morphism & of size k.

Theorem 1.16 (Refined log-concavity for morphisms). Let M = (X,J) and N = (Y,d) be matroids, and
let @ : M — N be a morphism of matroids. In addition, let ® : X — R~ be a positive weight function,
and let 1 <k <rtk(M). Then:

By (k)? > <1 + }() (1 + p(k—ll)—1> Bo(k—1)Bgy(k+1). (1.16)

As before, since p(k—1) < n—k+ 1, the theorem is an extension of Theorem 1.15.

Remark 1.17. The notion of morphism of matroids generalizes many classical notions in combinatorics
such as graph coloring, graph embeddings, graph homomorphism, matroid quotients, and are a special
case of the induced matroids. We refer to [EH20] for a detailed overview and further references (see
also §16.8).
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1.9 Equality conditions for morphisms of matroids

We start with the following characterization of equality in Theorem 1.15, which resolves an open problem
in [MNY21, Question 5.7].

Theorem 1.18 (Equality for morphisms). Let M = (X,J) and N = (Y,J) be matroids, let n := |X|, and
let ® : M — N be a morphism of matroids. In addition, let @ : X — R~ be a positive weight function,
and let 1 <k < rk(M). Suppose By (k) > 0. Then:

1 1

By(k)? = <1+k> <1+k> By(k—1)By(k+1). (1.17)

n—

if and only if girth(M) > k+ 1, weight function @ is uniform, and g(CI)(S)) =1k(N) forall S € J;_;.
Our next result is the following characterization of equality in Theorem 1.16.

Theorem 1.19 (Refined equality for morphisms). Let M = (X,J) and N = (Y,J) be matroids, and let
O : M — N be a morphism of matroids. In addition, let @ : X — R~ be a positive weight function, and
let 1 <k <rk(M). Suppose By (k) > 0. Then:

By (k)? > (1 + Ii) (1 + p(k_ll)_l) Bo(k—1)Bgy(k+1). (1.18)

if and only if there exists s(k— 1) > 0, such that for every S € J;_1 we have:

|Parg| = p(k—1), (MMEI)
Z o(x) = s(k—1)  forevery @€ Par(S), and (MME2)
xeC
g(®(S)) = rk(N). (MME3)

1.10 Discrete polymatroids

A discrete polymatroid® D is a pair ([n],J) of a ground set [n] := {1,...,n} and a nonempty finite
collection J of integer points @ = (ay,...,a,) € N" that satisfy the following:

* (hereditary property) a €J, b e N" s.t. b<a = be€J,and
* (exchange property) a,b €, |a| < |b| = Ji€ [n] s.t. a; <b; and a+e; € J.

Here b < a is a componentwise inequality, |a| :=a; +...+ay, and {ey,...,e,} is a standard linear basis
in R". When g C {0, 1}", discrete polymatroid D is a matroid. One can think of a discrete polymatroid
as a set system where multisets are allowed, so we refer to J as independent multisets and to |a| as size of
the multiset a.

2Discrete polymatroids are related but should not to be confused with polymatroids, which is a family of convex polytopes,
see e.g. [Sch03, §44] and §16.9.
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The role of bases in discrete polymatroids is played by maximal elements with respect to the order “<”;
they are called M-convex sets in [BH20, §2]. Define rk(D) := max{|a| : a € J }. For 0 < k <1k(D),
denote by g :={a € J : |a| =k} the subcollection of independent multisets of size k, and let J(k) := ’3k|.

Let @ : [n] — R~ be a positive weight function on [n]. We extend weight function ® to all @ € J as
follows:
o(a) == o(1)" --- o(n)™.

For every 0 < k <rk(D), define

(0]
Jo(k) == Z a(t'l), where a!:=a;!---ay,!
ach :

Theorem 1.20 (Log-concavity for polymatroids, [BH20, Thm 3.10 (4) < (7)]). Let D = (|n],d) be a
discrete polymatroid, and let ® : [n] — R~ be a positive weight function. For every 1 < k < tk(M), we
have:

Jo(k)? > <1 + ]lc) Jo(k—1) Jp(k+1). (1.19)

We now give a common generalization of Theorem 1.6 and Theorem 1.20. Fix 7 € [0, 1], and let

£ ()

14
For every 0 < k <rk(D), define
w(a)
al

Jos(k) =Y ™@

ach
Note that (3) =0 fora € {0,1}, so 7(a) = 0 for all independent sets a € J in a matroid.
For an independent multiset @ € J of a discrete polymatroid D = ([n],J), denote by
Cont(a) :={i€[n] : a+e; €J}. (1.20)

the set of continuations of a. For all i, j € Cont(a), we write i ~, j when a+e;+e; ¢ J or i = j. This
is an equivalence relation again, see Proposition 4.2. We call an equivalence class of the relation ~, a
parallel class of a, and we denote by Par(a) the set of parallel classes of a.

For every 0 < k < 1k(D), define the k-continuation number of a discrete polymatroid D as the
maximal number of parallel classes of independent multisets of size k:

p(k) := max{ ‘Par(a)} rac}. (1.21)
For matroids, this is the same notion as defined above in §1.4.

Theorem 1.21 (Refined log-concavity for polymatroids). Let D = ([n],d) be a discrete polymatroid, and
let o : [n] = R be a positive weight function. For every t € [0,1] and 1 <k < rk(M), we have:

2 1 1—1t B
Jou (k)" > <1 + k> (1 + Ty —1+t> Joi(k—1)Jp (k+1). (1.22)
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When ¢ = 1, this gives Theorem 1.20. When D is a matroid and ¢ = 0, this gives Theorem 1.6. For
general discrete polymatroids D and 0 < ¢ < 1, this is a stronger result.

Example 1.22 (Hypergraphical polymatroids). Let 5 = (V,E) be a hypergraph on the finite set of
vertices V, with hyperedges E = {ey,...,e,}, where ¢; CV, ¢; # &. Let W = {wy,...,w,} be a
collection of subsets of V, such that w; C ¢;, w; # &, and every vertex v € V belongs to some w;. A
hyperpath is an alternating sequence v — w; =V — w; =V’ — ... —u, where v,V € w;, v,V € wj,
etc., and the vertices v,v',V",...,u € V are not repeated.

A spanning hypertree in H is a collection W as above, such that every two vertices v,u € V are
connected by exactly one such hyperpath. Similarly, a spanning hyperforest in I is a collection W as
above, such that every two vertices are connected by at most one hyperpath. In the case all |e;| = 2, we
get the usual notions of (undirected) graphs, paths, spanning trees and spanning forests. We say that
d=(dy,...,d,), where d; = |w;| — 1 > 0, is a degree sequence of W. Note that in the graphical case, we
have d; € {0, 1}, so a forest is determined by its degree sequence. In general hypergraphs this is no longer
true.

Finally, a hypergraphical polymatroid corresponding to H is a discrete polymatroid Dg¢ = ([n],d),
where J is a set of degree sequences of spanning hyperforests in J{. Similarly to graphical matroids
(Example 1.29), the maximal elements are degree sequences of spanning hypertrees in J{. Therefore,
Theorems 1.20 and 1.21 give log-concavity for the weighted sum J (k) over degree sequences with
total degree d; + ...+ d, = k. See §16.10 for the background of this example.

1.11 Equality conditions for polymatroids

A discrete polymatroid D = ([n],d) is called nondegenerate if e; € J for every i € [n]. Define
polygirth(D) := min{k : J(k) < (”Zﬁ])} Observe that a € J for all a € N¥, |a| < polygirth(D).
Note that the polygirth of a discrete polymatroid does not coincide with the girth of a matroid. In fact,
polygirth(D) = 2 when D is a matroid with more than one element.

To get the equality conditions for (1.22), we separate the cases t =0, 0 <t < 1, and ¢t = 1. The case
t = 0 coincides with equality conditions for matroids given in Theorem 1.10. Examples in §1.7 show that
this is a difficult condition with many nontrivial examples. The other two cases are in fact much less rich.

Theorem 1.23 (Refined equality for polymatroids, t = 1 case). Let D = ([n],d) be a nondegenerate
discrete polymatroid, let @ : [n] — R~ be a positive weight function, and let 1 < k < rk(M). Then:

Jo(k)? = <1 + Ilc) Jo(k—1)Ju(k+1). (1.23)
if and only if polygirth(D) > (k+1).

We are giving the equality condition for (1.19) in place of (1.22), since J4, 1 (k) = J (k) for all k.

JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 63


https://jamathr.org

SWEE HONG CHAN AND IGOR PAK

Theorem 1.24 (Refined equality for polymatroids, 0 <t < 1 case). Let D = ([n],d) be a nondegenerate
discrete polymatroid, and let @ : [n] — R~ be a positive weight function. Fix 1 <k < k(M) and
0<t< 1. Then:

Jou(k)* = <1 - ]1€> (1 - p(k—ll)_—tl—l—t> Jos(k—1)Jo, (k+1). (1.24)

if and only if k=1, polygirth(D) > 2, and ® is uniform.

Remark 1.25. The reason the case t = 0 is substantially different, is because the combined weight
function V(@ o(a) is no longer strictly positive. Alternatively, one can view the dearth of nontrivial
examples in these theorems as suggesting that the bound in Theorem 1.21 can be further improved for
t > 0. This is based on the reasoning that Theorem 1.4 sharply improves over Theorem 1.3 because there
are only trivial equality conditions for the latter (see Theorem 1.8), when compared with rich equality
conditions for the former (see Theorem 1.9).

1.12 Poset antimatroids

Let X be finite set we call letters, let n = |X|, and let X* be a set of finite words in the alphabet X. A
language over X is a nonempty finite subset £ C X*. A word is called simple if it contains each letter at
most once; we consider only simple words from this point on. We write x € ¢ if word & € £ contains
letter x. Finally, let |a| be the length of the word, and denote £y := {a € £ : |ot| = k}.

A pair A = (X, L) is an antimatroid, if the language £ C X* satisfies:

* (nondegenerate property) every x € X is contained in at least one o € £,
* (normal property) every o € £ is simple,

o (hereditary property) af € L = a € L, and

* (exchange property) x€ o, x¢ B, and a,pe L = Jyca st. fye L.
Note that for every antimatroid A = (X, £), it follows from the exchange property that
tk(A) := max{|a| : a € L} = n.
Throughout the paper we use only one class of antimatroids which we now define (cf. §16.14).
Let P = (X,<) be a poset on |X| =n elements. A simple word a € X* is called feasible if a

satisfies:

* (poset property) if o contains x € X and y < x, then letter y occurs before letter x in «.
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A poset antimatroid Ap = (X, L) is defined by the language £ of all feasible words in X. The exchange
property is satisfied because one can always take y to be the minimal letter (w.r.t. order <) that is not in 3.

Let : X — R-( be a positive weight function on X. Denote by Cov(x) := {y € X : x<=y} the set
of elements which cover x. We assume the weight function @ satisfies the following (cover monotonicity
property):

o(x) > Z o(y), forall xe€X. (CM)
y€eCov(x)

Note that when (CM) is equality for all x € X, we have:

®(x) = number of maximal chains in P starting at x. (1.25)

Forall ¢ € £ and 0 <k <wmn, let

Ly(k) := Z o(a), where (o) := H o(x).

aely xXeQa

Theorem 1.26 (Log-concavity for poset antimatroids). Let P = (X, <) be a poset on |X| = n elements,
and let Ap = (X,L) be the corresponding poset antimatroid. Let ® : X — R~ be a positive weight
function which satisfies (CM). Then, for every integer 1 < k < n, we have:

Lo(k)? > Ly(k—1) - Ly(k+1). (1.26)

Example 1.27 (Standard Young tableaux of skew shape). Let A = (A,...,A¢) F n, be a Young diagram,
and let P = (A, <) be a poset on squares {(i—1,j—1) : 1<i<A;,1<j<(} C N, with (i, /) <
(¢,j) if i > and j > j'. Following (1.25), let @(i,j) = ("*/). Denote a; (k) := Ly (k), 0 < k < |A],

and we have: o
wl = Y 0 (’*.J),

WO, A/ pl=k (i)er/u N\ 1

where fA/H = ‘SYT()L / u)‘ is the number of standard Young tableaux of shape A/ (see §16.15). Now
Theorem 1.26 proves that the sequence {ay (k)} is log-concave, for every A.

This example also shows that the weight function condition (CM) is necessary. Indeed, let A be a
m x m square, n = m?, and let ®(i, j) = 1. Then, for all k < m, we have:

b(k) := Lo(k) = |Le| = ) f*.

ukk

The sequence {b;} is the number of involutions in Sy, see e.g. [OEIS, A000085], which satisfies
logh; = %nlogn + O(n), and is actually log-convex, see e.g. [Mez620, §4.5.2].
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1.13 Equality conditions for poset antimatroids

Let P = (X,<) be a poset on |X| = n elements, and let Ap = (X,£) be the corresponding poset
antimatroid.
For a word o € £, denote by

Cont(a) ;== {xeX :axe L}

the set of continuations of the word o.. Define an equivalence relation “~,” on Cont(c) by setting
x ~qy if axy ¢ L, see Proposition 4.3. We call the equivalence classes of “~” the parallel classes
of a, and denote by Par(a) the set of these parallel classes.

Let @ € £ and x € Cont(). We say that y € X is a descendent of x with respect to « if axy € £ and
oy ¢ L. Denote by Desy (x) the set of descendants of x with respect to . We omit o when the word is
clear from the context.

Theorem 1.28 (Equality for poset antimatroids). Let P = (X, <) be a poset on |X| = n elements, and let
Ap = (X, L) be the corresponding poset antimatroid. Let ® : X — R~ be a positive weight function
which satisfies (CM), and fix an integer 1 < k < n. Then:

Lo(k)? = Lo(k—1) - Ly(k+1) (1.27)

if and only if there exists s(k—1) > 0, such that for every o € Ly_; and x € Cont(a), we have:

o) = s(k—1), (AEI)
x€Cont(ar)

Desq(x) = Cov(x), and (AE2)

Y o) = o). (AE3)
yeCov(x)

The following is an example of a poset that satisfies conditions of Theorem 1.26.

Example 1.29 (Tree posets). Let T = (V, E) be a finite rooted tree with root at R € V, and the set of leaves
S C V. Suppose further, that all leaves v € S are at distance & from R. Consider a poset Pt = (V, <) with
v <V if the shortest path v/ — R goes through v, for all v,V € V. We call Pt the tree poset corresponding
to T. Denote by S(v) :=SN{V €V :V = v} the subset of leaves in the order ideal of v.

Let o : X — R.( be defined by (1.25). Observe that w(v) = ‘S(v) , since maximal chains in Pt
are exactly the shortest paths in T towards one of the leaves, i.e. of the form v — w for some w € S.
Note that S(v) 2 S(V/) for all v <V, S(v)NS(V') = & for all v and V' that are incomparable, and
Yrecov(y) IS(x)| = |S(v)| for all v & S. These imply (AE1)~(AE3) for all k < h, with s(k—1) = |S|. By
Theorem 1.26, we get an equality (1.27) in this case.

The following result shows the importance of tree posets for the equality conditions.
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Theorem 1.30 (Total equality for poset antimatroids). Let P = (X, <) be a poset on |X| = n elements,
and let Ap = (X, L) be the corresponding poset antimatroid. Let ® : X — R~ be a positive weight
Sfunction which satisfies (CM). Then:

Lo(k)? = Lo(k—1) - Lo(k+1) forall 1<k < height(P) (1.28)

if and only if P U0 is a tree poset Pt with a root at 6 with all leaves at the same distance to the root,
and such that c @ is defined by (1.25), for some constant multiple ¢ > 0.

1.14 Interval greedoids

Let X be finite set of letters, and let £ C X* be a language over X. A pair § = (X, L) is a greedoid, if
the language £ satisfies:

* (nondegenerate property) empty word & isin 0,
* (normal property) every o € L is simple,
o (hereditary property) af € L = o€ L, and

* (exchange property) a,B € L st. |a|>|B| = Ixeca st fxel.

Let rk(§) := max{|ct| : & € L} be the rank of greedoid G. Note that every maximal word in £ has the
same length by the exchange property. In the literature, greedoids are also defined via feasible sets of
letters in a0 € £, but we restrict ourselves to the language notation. We use [BZ92, §8.2.B] and [KLS91,
§V.5] as our main references on interval greedoids; see also §16.13 for some background.

Greedoid § = (X, L) is called interval if the language £ also satisfies:
e (interval property) o,B,y€X*, x€X st. ax,afyxel = ofxel.

It is well known and easy to see that antimatroids are interval greedoids.
Let q: L — R be a positive weight function. Let

Ly(k) =} a(a).

acly

In the next section, we define the notion of k-admissible weight function q, see Definition 3.2. This
notion is much too technical to state here. We use it to formulate our first main result:

Theorem 1.31 (Log-concavity for interval greedoids, first main theorem). Let G = (X, L) be an interval
greedoid, let 1 <k <1k(9), and let q: L — R~ be a k-admissible weight function. Then:

Lq(k)? > Lg(k—1) - Ly(k+1). (1.29)

This is the first main result of the paper, as it implies all previous inequalities for matroids, polyma-
troids and antimatroids.
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Example 1.32 (Directed branching greedoids). Let G = (V,E) be a directed graph on |V | = n vertices
strongly connected towards the root R € V. An arborescence is a tree in G strongly connected towards
the root R. Aword @ =e;---e; € E* is called pointed if every prefix of o consists of edges which form
an arborescence. One can think of pointed words as increasing arborescences in G (cf. §16.16).

The directed branching greedoid G = (E, L) is defined on the ground sets E by the language £ C E*
of pointed words. It is well known and easy to see that G is an interval greedoid. When G =T is a
rooted tree, greedoid Gr is the poset antimatroid corresponding to the tree poset Pp (see Example 1.29).
For general graphs, greedoid G¢ is not necessarily a poset antimatroid. Theorem 1.31 in this case proves
log-concavity for the numbers Lq(k) of weighted increasing arborescences, cf. §16.16.

1.15 Equality conditions for interval greedoids

A word B € X* is called a continuation of the word o € L, if a8 € L. Denote by Cont(a) C X* the
set of continuations of the word o with B € X* of length || = k. Note that Cont(o:) = Cont; (¢t). For
notational convenience, we define Cont(at) =@ if ¢ ¢ L.

For every o € £, let

Loa(k) == ), a(apB).

BeConty (o)

Note that Ly(k) = Lq »(k) and Ly 4(0) = q(a).

Theorem 1.33 (Equality for interval greedoids, cf. Theorem 3.3). Let G = (X, L) be an interval greedoid,
let 1 <k <r1k(9), and let q: L — R~ be a k-admissible weight function. Then.:

Lq(k)* = Lq(k—1) - Lq(k+1)
if and only if there is s(k—1) > 0, such that for every o € L1 we have:

Lyo(2) = s(k—1)Lga(1) = s(k—1)*Lqa(0).

This is the second main result of the paper, giving an easy way to check the equality conditions.
A more detailed and technical condition is given in Theorem 3.3, which we use to obtain the equality
conditions for matroids, polymatroids and antimatroids.

1.16 Linear extensions

Let P := (X, <) be aposeton n:= |X| elements. A linear extension of P is a bijection L: X — {1,...,n},
such that L(x) < L(y) for all x <y. Fix an element z € X. Denote by & := £(P) the set of linear
extensions of P, let & := {L € & : L(z) =k}, and let e(P) := |E|. See §16.17 and §16.18 for some
background.
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Theorem 1.34 (Stanley inequality [Sta81, Thm 3.1]). Let P = (X, <) be a poset with |X| = n elements,
and let z € X. Denote by N(k) := | Ex| the number of linear extensions L € E(P), such that L(z) = k.
Then, for every 1 < k < n, we have:

N(k)*> > N(k—1) - N(k+1). (1.30)

We now give a weighted generalization of this result. Let @ : X — R be a positive weight function
on X. We say that @ is order-reversing if it satisfies

xy = okx > o). (Rev)

Fix z € X, as above. Define @ : &€ — R by

olL) = [] oW, (1.31)
x:L(x)<L(z)
and let
No(k) =) o(L), forall 1<k<n. (1.32)
Leé&y

Theorem 1.35 (Weighted Stanley inequality). Let P = (X, <) be a poset with |X| = n elements, and
let ®: X — R~ be a positive order-reversing weight function. Fix an element 7 € X. Then, for every
1 < k < n, we have:

No(k)* > No(k—1) - Ng(k+1), (1.33)

where Ny, (k) is defined by (1.32).

Remark 1.36. In §14.8, we give further applications of our approach by extending the set of possible
weights in Theorem 1.35 to a smaller class of posets with belts. We postpone this discussion to avoid
cluttering, but the interested reader is encouraged to skip to that subsection which can be read separately
from the rest of the paper.’

1.17 Two permutation posets examples

It is not immediately apparent that the numbers of linear extensions appear widely across mathematics.
Below we present two notable examples from algebraic and enumerative combinatorics, see §16.19 for
some background.

3In a followup investigation, we use the combinatorial atlas technology in [CP22b] to prove correlation inequalities for the
numbers of linear extensions of posets.
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Example 1.37 (Bruhat orders). Let ¢ € S, and define the permutation poset Ps = ([n], <) by letting
i<j < i<jand o(i)<o(j).
Fix z € [n]. Viewing € = E(Ps) as a subset of S,,, it is easy to see that & is the lower ideal of ¢ in the

(weak) Bruhat order B, = (S,,<1). Thus, & = {v €S, :v(z) =k vd G}.
Let (i) = ¢', where 0 < ¢ < 1. Then @ is order-reversing. Now (1.31) gives @(v) = gPv), where

1ifr>0

z—1
B(v) := ; i-x(k—v(i)) and x(r) := {O <0

Now Theorem 1.35 gives log-concavity a,(k)? > a,(k—1)-a,(k+ 1), where a,(k) := Ng(k) >0 is

given by
Wk = Y P

veS,:v<4o,v(z)=k

Example 1.38 (Euler—Bernoulli and Entringer numbers). Let Q,, = ([2m — 1], <) be a height two poset
corresponding to the skew Young diagram 8,/ 8—2, where 8, := (m,...,2,1). The linear extensions of
Q,, are in natural bijection with alternating permutations ¢ € Syp—1 s.t.

o(l)>0(2)<oc(3)>0(4) <...

Then the numbers e(Q,,) are the Euler numbers, which are closely related to the Bernoulli numbers, and

have EGF
t2m—1

’E,l (=1)" " e(Qn) am—1 tan(r) ,

see e.g. [OEIS, A000111]. Fix z = 1. Itis easy to see that triangle of numbers a(m,k) = [€(Qy)| are
Entringer numbers [OEILS, A008282], and Stanley’s Theorem 1.34 proves their log-concavity:

a(m,k)* > a(mk—1)a(m,k+1) for 1 <k<2m—2.

Now, let o(2) =w(4)=...=1, o(l) = ®(3) = ... = g, where 0 < ¢ < 1. Similarly to the previous
example, we have (o) = ¢"(9), where (o) is the number of permutation entries in the odd positions
which are < k. Theorem 1.35 then proves log-concavity for the corresponding g-deformation of the
Entringer numbers.

1.18 Equality conditions for linear extensions

Let P := (X, <) be a poset on |X| = n elements. Denote by f(x) := |{y € X : y <x}| and g(x) := |{y €
X :y> x}‘ the sizes of lower and upper ideals of x € X, respectively, excluding the element x.

Theorem 1.39 (Equality condition for Stanley inequality [SVH20, Thm 15.3]). Let P = (X, <) be a poset
with |X| = n elements. Let z € X and let N(k) be the number of linear extensions L € E(P), such that
L(z) = k. Suppose that N(k) > 0. Then the following are equivalent:
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(@ N(k)> =N(k—1) -N(k+1),
() N(k+1) = N(k) = N(k—1),
(c) we have f(x) >k forall x>z and g(x) >n—k+1 forall x<z.

See §16.22 for some background. The weighted version of this theorem is a little more subtle and
needs the following (s, k)-cohesiveness property:

oL '(k—1)) = oL "(k+1)) =s, forall L€ &. (Coh)

Note that (Coh) can hold for non-uniform weight functions @, for example for P = A1 &C,__1,
1.e. the linear sum of an antichain on which @ is uniform and a chain on which @ can be non-uniform. In
fact, if z is an element in Ay, 1, we can have ®(z) different from the rest of the antichain.

Theorem 1.40 (Equality condition for weighted Stanley inequality). Let P = (X, <) be a poseton |X|=n
elements, and let ® : X — R~ be a positive order-reversing weight function. Fix element z € X and let
N (k) be defined as in (1.32). Suppose that N, (k) > 0. Then the following are equivalent :

(@) Ngy(k)?> = Np(k—1) - Ny(k+1),
(b) there exists s =s(k,z) >0, s.1.

No(k+1) = sNg(k) = SzNa)(k_l)v

(c) there exists s =s(k,z) >0, s.t. f(x) >k forall x>z, g(x)>n—k+1 forall x <z, and (Coh).

1.19 Summary of results and implications
Here is a chain of matroid results from new to known:

Thm1.6 == Thm1l4 = Thm 1.3 = Thm 1.2 = Thm 1.1.

The first two of these introduce the refined log-concave inequalities, both weighted and unweighted, and
they imply the last three known theorems. For morphisms of matroids and for polymatroids, we have two
new results which extend two earlier results:

Thm 1.16 = Thm 1.15 and Thm 1.21 = Thm 1.20.

Here is a family of implications of log-concave inequalities across matroid generalizations, from
interval greedoids to polymatroids to matroids, and from interval greedoids to poset antimatroids:

Thm 1.31 =844 Thm 1.21 =§1.10 Thm 1.6 and Thm 1.31 =§4.2 Thm 1.26.

All these results are new. Note that both polymatroids and poset antimatroids are different special cases
of interval greedoids, while our results on morphisms of matroids are separate and do not generalize.
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For the equality conditions, we have a similar chain of implications across matroid generalizations:

Thm 3.3 = Thm 1.33 = Thm 1.24 U Thm 1.23 = Thm 1.10 = Thm 1.9 = Thm 1.8,
Thm 1.19 = Thm1.18 and Thm 3.3 = Thm 1.28 = Thm 1.30.

Of these, only Theorem 1.8 was previously known. The most general of these, Theorem 3.3, is too
technical to be stated in the introduction. The same holds for Definition 3.2 needed in Theorem 1.31. We
postpone both the definition and the general theorem until Section 3.

Finally, for the Stanley inequality and its equality conditions, we have:
Thm 1.35 = Thm 1.34 and Thm 15.1 = Thm 140 = Thm 1.39.

In both cases, more general results are new and correspond to the case of weighted linear extensions.

Let us emphasize that while some of these implications are trivial or follow immediately from
definitions, others are more involved and require a critical change of notation and some effort to verify
certain poset and weight function properties. These implications are discussed in Section 4.

1.20 Proof ideas

Although we prove multiple results, the proof of each log-concavity inequality uses the same approach
and technology, so we refer to it as “the proof™.

At the first level, the proof is an inductive argument proving a stronger claim about eigenvalues of
certain matrices associated with the posets. The induction is not over posets of smaller size, but over
other matrices which can in fact be larger, but correspond to certain parameters decreasing as we go
along. The claim then reduces to the base of induction, which is the only part of the proof requiring a
computation. The latter involves checking eigenvalues of explicitly written small matrices, making the
proof fully elementary.

Delving a little deeper, we set up a new type of structure which we call a combinatorial atlas. In
the special case of greedoids, a combinatorial atlas A associated with a greedoid § = (X, L), |X| =n, is
comprised of:

o acyclic digraph I's = (£, ®), with the unique source at the empty word & € £, and edges
corresponding to multiplications by a letter: @ = {(oc, ox) : a,oxe L, xeX },

o each vertex o € £ is associated with a pair (Mg, hy), where My = (Mi j) is a nonnegative
symmetric d X d matrix, hg = (hy,...,h;) is a nonnegative vector, and d =n—+ 1,

o each edge (a,ax) € O is associated with a linear transformation TS;C) :RY — R,

The key technical observation is that under certain conditions on the atlas, we have every matrix M := Mg,
a € L, is hyperbolic:

(v,Mw)? > (v,Mv)(w,Mw) forevery v,we R, suchthat (w,Mw) > 0. (Hyp)

Log-concavity inequalities now follow from (Hyp) for the matrix Mg, by interpreting the inner products
as numbers Lq(k), Lq(k— 1) and Ly(k+ 1), respectively.
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We prove (Hyp) by induction, reducing the claim for M, to that of M, , for all x € Cont(x).
Proving (Hyp) for the base of induction required the eigenvalue interlacing argument, cf. §17.5. This
is where our conditions for the weight function @ appear in the calculation. We also need a few other
properties of the atlas. Notably, we require every matrix My, to be irreducible with respect to its support,
but that is proved by a direct combinatorial argument.

For other log-concavity inequalities in the paper, we consider similar atlas constructions and similar
claims. For the equalities, we works backwards and observe that we need equations (Hyp) to be equalities.
These imply the local properties which must hold for certain edges (a,ox) € ®. Analyzing these
properties gives the equality conditions we present.

1.21 Discussion

Skipping over the history of the subject (see Section 16), in recent years a great deal of progress on
the subject was made by Huh and his coauthors. In fact, until the celebrated Adiprasito—-Huh—Katz
paper [AHK18], even the log-concavity for the number of k-forests (Welsh—Mason conjecture for
graphical matroids), remained open. That paper was partially based on the earlier work [Huh12, Huh15,
HK12], and paved a way to a number of further developments, most notably [ADH20, BES19, BST20,
B+20a, B+20b, HSW22, HW17].

From the traditional order theory point of view, the level of algebra used in these works overwhelms
the senses. The inherent rigidity of the original algebraic approach required either to extend the algebra as
in the papers above, or to downshift in the technology. The Lorentzian polynomials approach developed by
Brindén—Huh [BH18, BH20] and by Anari et. al [ALOV 18] allowed stronger results such as Theorem 1.3
and led to further results and applications such as [ALOV19, BLP20, HSW22, MNY21]. This paper
represented the first major downshift in the technology.

(o) A casual reader can be forgiven in thinking of this paper as a successful deconstruction of the
Lorentzian polynomials into the terminology of linear algebra. This is the opposite of what happens
both mathematically and philosophically. Our approach does in fact contain much of the Lorentzian
polynomials approach as a special case (cf. §17.9). This can be made precise, but we postpone that
discussion until [CP22a].

However, viewing greedoids and its special cases as languages allows us to reach far beyond what the
Lorentzian polynomials possibly can.* To put this precisely, our maps Tg ) have a complete flexibility in
their definition. In the world of Lorentzian polynomials, the corresponding maps are trivial. We trade the

elegance of that approach to more complexity, flexibility and strength.

(o) The true origin of our “combinatorial atlas” technology lies in our deconstruction of the Stanley
inequality (1.30). This is both one of oldest and the most mysterious results in the area, and our proof is
elementary but highly technical, more so than our proof of greedoid results.

To understand the conundrum Stanley’s inequality represents, consider the original proof in [Sta81]
which is barely a page long via a simple reduction to the classical Alexandrov—Fenchel inequality. The
latter is a fundamental result on the subject, with many different proofs across the fields, all of them

“4Lest one think to use a straightforward generalization to noncommutative polynomials, try imagining the right notion of a
partial derivative which plays a crucial role in [ALOV 18, BH20].
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difficult (see §16.20). This difficulty represented the main obstacle in obtaining an elementary proof of
Stanley’s inequality.

(o) Most recently, the new proof of the Alexandrov—Fenchel inequality by Shenfeld and van Han-
del [SvH19] using “Bochner formulas”, renewed our hopes for the elementary proof of Stanley’s inequal-
ity. Their proof exploits the finiteness of the set of normals to polytope facets in a very different way
from Alexandrov’s original approach in [Ale38], see discussion in [SVH19, §6.1]. Our next point of
inspiration was a most recent paper [SvH20] by Shenfeld and van Handel, where the authors obtain the
equality conditions for Stanley’s inequality (see Theorem 1.39) with applications to Stanley’s inequality
(cf. §17.11).

Deconstruction of [SVH19, SvH20] combined with ideas from [BH20, Sta81] and our earlier work
[CPP22a, CPP21], led to our “combinatorial atlas” approach. Both the Stanley inequality and the
conditions for equality followed from our linear algebra setting and became amenable to generalizations.
Part of the reason for this is the explicit construction of maps Tff >, which for convex polytopes are shown
in [SvH19] to exist only indirectly albeit in greater generality, see also §17.6.

(o) Now, once we climbed the mountain of Stanley’s inequality by means of the new technology, going
down to poset antimatroids, polymatroids and matroids became easier. Our ultimate extension to interval
greedoids required additional effort, as evidenced in the technical definitions in Section 3. Furthermore,
our approach retained the flexibility of allowing us to match the results with equality conditions.

(o) In conclusion, let us mention that the ultimate goal we set out in [Pak19], remains unresolved. There,
we observed that the Adiprasito—-Huh—Katz inequalities for graphs and Stanley inequalities for numbers
of linear extensions correspond to nonnegative integer functions in GAPP = #P — #P. We asked whether
these functions are themselves in #P. This amounts to finding a combinatorial interpretation for the
difference of the LHS and the RHS of these inequalities. While we use only elementary tools, the
eigenvalue based argument is not direct enough to imply a positive answer. See §17.17 for more on this
problem.

1.22 Paper structure

We start with basic definitions and notions in Section 2. In the next Section 3 we present the main results
of the paper on log-concave inequalities and the matching equality conditions for interval greedoids. We
follow in Section 4 with a chain of combinatorial reductions explaining how our greedoids results imply
poset antimatroid, polymatroid and matroid results.

In Section 5 we introduce the notion of combinatorial atlas, which is the main technical structure
of this paper. We then show how to derive log-concave inequalities in this general setting. The key
combinatorial properties of the atlases are given in Section 6. In the next Section 7, we show that under
additional conditions on the atlas, we can characterize the equality conditions.

From this point on, much of the paper occupy proofs of the results:
o Thm 1.31 (interval greedoids inequality) is proved in Section 8,
o Thm 3.3 (interval greedoids equality conditions) is proved in Section 9,

o Thm 1.6, Thm 1.9, Thm 1.10 (matroid inequality and equality conditions) are proved in
Section 10;
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in addition, this section includes proof of Prop. 1.11, further results on log-concavity for graphs
(§10.5), and examples of combinatorial atlases (§10.7),

o Thm 1.21, Thm 1.23 and Thm 1.24 (discrete polymatroid inequality and equality conditions)
are proved in Section 11,

o Thm 1.26, Thm 1.28 and Thm 1.30 (poset antimatroid inequality and equality conditions) are
proved in Section 12,

o Thm 1.16, Thm 1.18 and Thm 1.19 (morphism of matroids inequality and equality conditions)
are proved in Section 13,

o Thm 1.35 (weighted Stanley’s inequality) is proved in Section 14; in addition, this section
includes
§14.8 on posets with belts and an example §14.7 of a combinatorial atlas in this case,

o Thm 1.40 (equality condition for weighted Stanley’s inequality) is proved in Section 15.

These last two sections are the most technically involved parts of this paper. Note that although Sections
10-13 are somewhat independent, we do recommend the reader start with the matroid proofs in Section 10
because of the examples and as a starting point of generalizations, and antimatroid proofs in Section 12
because it has the shortest and cleanest reduction to the earlier greedoid results.

We conclude the paper with a lengthy historical Section 16 which cover to some degree various
background behind results int he introduction. Since the material is so vast, we are somewhat biased
towards most recent and general results. We present final remarks and open problems in Section 17.

2 Definitions and notations

2.1 Basic notation

We use [n] ={1,...,n}, N={0,1,2,...}, Z, ={1,2,...}, Ryo = {x >0} and R-o = {x > 0}. Fora
subset S C X and element x € X, we write S+x:=SU{x} and § —x:= S~ {x}.

2.2 Matrices and vectors

Throughout the paper we denote matrices with bold capitalized letter and the entries by roman capitalized
letters: M= (M;;). We also keep conventional index notations, so, e.g., (M° —i—Mz)l.j is the (i, j)-th
matrix entry of MP ++M?. We denote vectors by bold small letters, while vector entries by either unbolded
uncapitalized letters or vector components, e.g. h = (hy,hy,...) and h; = (h);.

A real matrix (resp., a real vector) is nonnegative if all its entries are nonnegative real numbers, and
is strictly positive if all of its entries are positive real numbers. The support of a real d x d symmetric

matrix M is defined as:
supp(M) := {i€[d] : M;; #0 for some j € [d] }.
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In other words, supp(M) is the set of indexes for which the corresponding row and column of M are
nonzero vectors. Similarly, the support of a real d-dimensional vector h is defined as:

supp(h) := {ie[d] : h;#0}.

For vectors v,w € RY, we write v < w to mean the componentwise inequality, i.e. v; < w; for all i € [d].
We write |v|:=v|+...+v,. Wealso use ey,...,e, to denote the standard basis of R?.

Finally, for a subset S C [d], the characteristic vector of S is the vector v € R? such that v; = 1 if
icSand v;=0if i ¢ S. We use 0 € R to denote the zero vector.

2.3 Words

For a finite ground set X, we denote by X* the set of all sequences x; - --xy (¢ > 0) of elements x; € X for
i € [(]. We call an element of X* a word in the alphabet X. By a slight abuse of notation we use x; to
also denote the i-th letter in the word . The length of a word @ = x| - - - xy is the number of letters £ in
the word, and is denoted by |a|. The concatenation a3 of two words o and f is the string o followed
by the string B. In this case « is called a prefix of of3. For every o = x1---x; € X*, we write z € a if
x; = z for some i € [{].

2.4 Posets

A poset P = (X, <) is a pair of ground set X and a partial order “<” on X. For x,y € X, we say that y
covers x in P, write x«—y, if x <y, and there exists no z € X such that x < z < y. For x,y € X, we write
x||y if x and y are incomparable in P. Denote by inc(x) C X the subset of elements y € X incomparable
with x.

A lower ideal of P is a subset S C X such that, if x € S and y < x, then y € S. Similarly, an upper
ideal of P is a subset S C X such that, if x € S and y > x, then y € X. The Hasse diagram H := Hqp of P
is the acyclic digraph with X as the vertex set, and with (x,y) as an edge if x«y.

A chain of P is a subset of X that is totally ordered: x; < x3 < ... < x¢. An antichain is a subset
S C X, such that every two elements in S are incomparable. Height of a poset height(P) is the length of
the maximal chain in P. Similarly, width of a poset width(P) is the size of the maximal antichain in P.
Element x € X is called minimal if there is no y € X, s.t. y < x. Define maximal elements similarly.

3 Combinatorics of interval greedoids

3.1 Preliminaries

Let § = (X,£) be an interval greedoid of rank m :=rk(G). Recall the definitions of Par(a) and Desg (x)
given in §1.13 above, and note that “~,” remains an equivalence relation, see Proposition 4.3.
For all o € £ and x,y € X, define passive and active non-continuations as follows:

Pasq(x,y) = {ZEX caz ¢ L, axz,ayz ¢ L, axyzEL},
Acty(x,y) = {ZEX cazé¢ L, axz,ayz € L, chyzell}.
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Let q: £ — R-¢ be a positive weight function, which we extend to q : X* — R by setting q(a@) =0

forall @ ¢ £. Let ¢ = (co,...,cm) € R”E, where m = rk(§), be a fixed positive sequence, which we

call the scale sequence. Consider another weight function o : X* — R:

o(a) = q(cOt)7 where ¢ = |a| and a € X", 3.1
¢

which we call the scaled weight function.

3.2 Properties

Fix weight function q : £ — R+ and scale sequence ¢ € R’ga’]. For every word a € £ of length ¢ := |a],
consider the following properties.

1. Continuation invariance property:
q(axyB) = q(ayxp) forall x,y € Cont(ax) and B € X™. (Contlnv)
Note that by the exchange property, we have oxyf € £ if and only if oyxp € L.

2. Passive-active monotonicity property:

Y ) q(oxyzB) > ) Y q(oxyzp), (PAMon)

z€Pasg(x,y) B €Conty(axyz) z€ Actg(x,y) B €Conty(0axyz)
for all distinct x,y € Cont(c), and k > 0. We also have a stronger property stated in terms of £.
2'. Weak local property:

x,y,z€X st axz,ayz,axyze L = oazel. (WeakLoc)

Observe that (WeakLoc) implies that Acty(x,y) = @ for all distinct x,y € Cont(ct), which in turn trivially
implies (PAMon). Note also that (WeakLoc) is a property of a greedoid rather than the weight function.
Greedoids that satisfy (WeakLoc) are called weak local greedoids.?

3. Log-modularity property:

o(ox) o(ay) = o(o) o(oxy) forall x,y € Cont(a) s.t. oxy € L. (LogMod)

4. Few descendants property:

|C|>2 = Desq(x) =2, foreveryxecC and C € Par(a). (FewDes)

SThis is a new class of greedoids which is similar but more general than the local poset greedoids. See Section 4 for the
properties of weak local greedoids, relationships to other classes, and §17.14 for further background.
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Note that (FewDes) is satisfied if |C| < 1, or if Desq(x) = @.
5. Syntactic monotonicity property:

o(ax)? > Z o(a) o(oaxy), forall x € Cont(a). (SynMon)
y€Desq(x)

For all € € Par(«), define

o) o(axy) oo g
b (C) = y@%(x) o(ox)? o=t (3.2)

0 if [€]>2.

Note that properties (FewDes) and (SynMon) imply that by (C) < 1 for all € € Par(e). This sets up our
final

6. Scale monotonicity property:

2
€ > 1
- — ——— < 1, forall €€ Par(a). (ScaleMon)
< Ceceta Geé(a) 1 = ba(C€)

We adopt the convention that (ScaleMon) is always satisfied whenever c% 1 = ¢eceqn (because then the
LHS is considered nonpositive), and that by (C) < 1 for all € € Par(a) whenever c% 1 < ceeppn (as
otherwise the LHS is considered to be o) . In particular, note that (ScaleMon) is satisfied for the uniform
scale sequence ¢ = (1,...,1).

Remark 3.1. The last four properties (LogMod), (FewDes), (SynMon) and (ScaleMon) have a linear
algebraic interpretation as certain matrix being hyperbolic. We postpone a discussion of this until the
next section.

3.3 Admissible weight functions

We can now give the main definition used in the first main result of the paper (Theorem 1.31).

Definition 3.2 (k-admissible weight functions). Let G = (X, L) be an interval greedoid of rank m :=rk(9),
and let 1 < k < m. Weight function @ : L — R+ is called k-admissible, if there is a scale sequence
¢ =(co,...,cm) € R’;lgl, such that properties (Contlnv), (PAMon), (LogMod), (FewDes), (SynMon)
and (ScaleMon) are satisfied for all o € £ of length || < k.

We can also state our second main result of the paper, which gives the third equivalent condition in
Theorem 1.33 that is both more detailed and useful in applications.
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Theorem 3.3 (Equality for interval greedoids, second main theorem). Let § = (X,£) be an interval
greedoid of rank m := rk( 9) let 1 <k<m,andlet q: L — Rsg be a k-admissible weight function with
a scale sequence ¢ = (co,...,cm) € Rm+1 Then, the following are equivalent:

a. We have:
Lq(k)* = Lq(k—1) - Ly(k+1). (GE-a)

b. There is s(k—1) > 0, such that for every a € Ly_; we have:

Lya(2) = s(k—1)Lga(1) = s(k—1)*Lqq(0). (GE-b)

c. Thereis s(k—1) >0, such that for every o € Ly_1 we have:

Y alox) s(k—1), and (GE-c1)
x€Cont(@) q(OC)
2
(1 —bg(€ Z = s(k—1) <1 ck) forall €€ Par(a), (GE-c2)
el q Ck—1 Ck+1

where by (C) is defined in (3.2).
Note that (GE-c1) and (GE-c2) imply that (ScaleMon) is always an equality for o € £;_;.

Remark 3.4. Note that the k-admissible property of weight functions q is quite constraining and there
are interval greedoid for which there are no such q. Given the abundance of examples where such weight
functions are natural, we do not investigate the structural properties they constrain (cf. §16.11).

4 Combinatorial preliminaries

In this section we present basic properties of matroids, polymatroids, poset antimatroids, local poset
greedoids and interval greedoids. We include the relations between these classes which will be important
in the proofs. Most of these are relatively straightforward, but stated in a different way and often dispersed
across the literature. We include the short proofs for completeness and as a way to help the reader get
more familiar with the notions. The reader well versed with greedoids can skip this section and come
back whenever proofs call for the specific results.

4.1 Equivalence relations

Here we prove that equivalence relations given in the introduction are well defined. We include short
proofs both for completeness.

Proposition 4.1. Let M = (X,J) be a matroid, and let S € J be an independent set. Then the relation
“~g” defined in §1.4 is an equivalence relation.
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Proof. Observe that x ~g y if and only if x and y are parallel in the matroid M/S obtained from M by
contracting over S. 0

Proposition 4.2. Let D = ([n],d) be a discrete polymatroid, and let a € J be an independent multiset.

Then the relation “~,” defined in §1.10 is an equivalence relation.

Proof. It suffices to prove transitivity of “~,”, as reflexivity and symmetry follow immediately from
the definition. Let i ~, and j ~, k. Suppose to the contrary that i -4, k, so a + e; +e; € J. On the other
hand, a +e; € J since j € Cont(a). It then follows from applying the exchange property to @ +e; and
a+e;+e, that either a +e;+e; € J or a+e;+e; € g, both of which give us a contradiction. ]

Proposition 4.3. Ler G = (X,L) be an interval greedoid, and let a € L be a fixed word. Then the

¢

relation “~y” defined in §1.12 is an equivalence relation.

Proof. Reflexivity follows immediately from the definition. For the symmetry, let x ~ y and suppose to
the contrary that y 74 x. This is equivalent to ctyx € £. On the other hand, ox € £ since x € Cont(c).
It then follows from applying the exchange property to ox and ayx that axy € £, which contradicts
Xr~g .

For transitivity, let x ~4 y and y ~ z. Suppose to the contrary, that x -4y z, so axz € £. On the other
hand, oty € £ since y € Cont(c). It then follows from applying the exchange property to ay and oxz,
that either ayx € £ or ayz € £, both of which gives us a contradiction. O

We conclude with another equivalence relation, which will prove important in §13.2. Let & : M — N
be a morphism of matroids, let f be the rank function for M = (X,J), and let g be the rank function for
N = (Y,d). For an independent set S € J, let H C X be given by

H = {xeX\S: g(®(S+x)) =rk(N)—1}. 4.1
Denote by “~p” the equivalence relation on H, defined by

x~pgy = g(P(S+x+y)) =rk(N)—1. (4.2)

“«

Proposition 4.4. The relation “~y” defined in (4.2) is an equivalence relation.

Proof. Reflexivity and symmetry follows directly from definition, so it suffices to prove transitivity.
Suppose that x,y,z € H are distinct elements, such that x ~g y and y ~g z. Assume to the contrary, that
x oty z. This implies that g(®(S+x+z)) = rk(N). Applying the exchange property for matroid N to
®(S+y) and P(S+x+z), we have that either g(P(S+y+x)) =1k(N) or g(P(S+y+z)) =rk(N).
This contradicts the assumption, and completes the proof. O
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4.2 Antimatroids C interval greedoids

Note that (nondegenerate property) defining the language of a greedoid is vacuously true for poset
antimatroids. Also note that two properties defining the language of a greedoid are identical to those
defining antimatroids: (normal property) and (hereditary property). Similarly, the (exchange property)
for antimatroids is more restrictive than the (exchange property) for greedoids.

It remains to show that the (interval property) holds for antimatroids. Let A = (X,£) be an
antimatroid. Suppose o, 3,7 € X* and x € X, s.t. ax, affyx € L. Write & := ax and B’ := 8. Then
note that x € &’ and x ¢ B, as otherwise w:= afyx ¢ L since w is not a simple word, and o', B’ € L.
Also note that x is the only letter in @’ that is not contained in B’. It then follows from the (exchange
property) for A, that afx = 'x € £, as desired. [

Proposition 4.5. Let P = (X, <) be a poset, and let A = (X, L) be the corresponding antimatroid. Then
A satisfies the (interval property), (FewDes) and (WeakLoc).®

Proof. The (interval property) is proved above for all antimatroids. For (WeakLoc), let x,y,z € X, s.t.
oxz, oyz, axyz € L. Since oxz € £ and y ¢ axz, this implies z is incomparable to y in P. Together with
ayz € L, this implies that oz € £, as desired.

For (FewDes), note that A satisfies

ax,ay €L, x,yeX — oxycl. 4.3)

Indeed, this is because «y € £ implies that every element in P that is less than y is contained in ¢, so
they are also contained in ocx. This in turn implies that oxy € £. Now note that (4.3) implies that |C| = 1
for every parallel class C € Par(a) of a € £, and thus (FewDes) is satisfied trivially. O

4.3 Matroids C greedoids

Given a matroid M = (X,J), we construct the corresponding greedoid § = (X, £), where £ is defined as
follows:
o=x;--x€l <= o« issimpleand {x,...,x} €7J.

Observe that (nondegenerate property) for G follows from matroid M being nonempty, (normal property)
follows from definition, (hereditary property) for G follows from the (hereditary property) for M, and
the (exchange property) for G follows from (exchange property) for M.

Proposition 4.6. Given a matroid M = (X,J), the greedoid G = (X, L) constructed above satisfies the
(interval property), (FewDes) and (WeakLoc).

Proof. Now note that, the greedoid G satisfies

axyel, x,yeX = ayel. 4.4)

SWeak local property does not hold for all antimatroids, but holds for all poset antimatroids.
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This follows from commutativity of £ and the (hereditary property) of M. The (interval property) for G
follows immediately from (4.4).

Now, it follows from (4.4) that Desy (x) = @ for every & € £ and x € X, and (FewDes) then follows
trivially. Finally, let x,y,z € X, s.t. oxz, ayz, axyz € £. Applying (4.4) to axz € £, it then follows that
az € L. This proves (WeakLoc), and completes the proof. U

4.4 Discrete polymatroids C greedoid

Given a discrete polymatroid D = ([n],J), we construct the corresponding greedoid § = (X,£) as
follows. Let X := {x,-j 1<i,j < n} be the alphabet.”

For every word a € X*, denote by a, = (aj,...,a,) € N" the vector counting the number of
occurrences of x; ,’s in @, i.e. a; := ‘{] € n] : Xij €O } | The word o € X* is called well-ordered if for
every letter x;; in , letter x;;_1 is also in o before x;;.

Define £ to be the set of simple well-ordered words o € X*, such that a, € J. Note that, each vector
a € J corresponds to ( a "_‘_'." an) many feasible words ¢ € £ for which a, = a. Namely, these are all
permutations of the word xj1---X1a, -+ Xn1--Xna, preserving the relative order of letters x;p,...,X;qa;.

For the greedoid § = (X, L), the (nondegenerate property) and the (normal property) follow from
definition. On the other hand, the (hereditary property) and the (exchange property) for G follows from
the corresponding properties for D. This completes the proof. [

Proposition 4.7. Given a discrete polymatroid D = (|n],d), the greedoid G = (X,L) constructed above
satisfies the (interval property), (FewDes) and (WeakLoc).

Proof. First, let us show that (interval property) holds for §. Let a,,y € X*,and let z=1x;; € X s.t.
oz, ofyz € L. Since afyz € £, this implies that x;j.1,...,x;, ¢ B. Since oz € £, this implies that
o Pz is well-ordered. On the other hand, by applying the (hereditary property) of D to the word a3z, it
then follows that a4, € J. Hence, the word oz € £, which proves the (interval property).

Now, note that G satisfies

Desg (xij) € {xij+1} forevery o€ £ and x;; € Cont(c). (4.5)

For (WeakLoc), let x,y,z € X, s.t. axz, ayz, axyz € L. Suppose to the contrary, that oz ¢ £. Since
oxz € £ and ayz € L, this implies that z € Desy (x) and z € Desy/(y). On the other hand, this intersection
is empty by (4.5). This gives a contradiction, and proves (WeakLoc).

For (FewDes), let a = a, where o € £, and let x,y € Cont(@) be distinct elements s.t. x ~ y. Let
i,j € [n] be such that ag, =a+e; and agy, =a+e;. Note that i # j and a+e;,a+e; € J. Suppose to
the contrary, that (FewDes) is not satisfied, so we can assume that Desy(x) # @. By (4.5), this implies
that a+2e; € J. Now, by applying the polymatroid exchange property to a +e€; and a +2e;, we then
have a +e;+e; € J. This contradicts the assumption that x ~ y, and proves (FewDes). g

"Unlike the rest of the paper, here |X| = n?.
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4.5 Exchange property for morphism of matroids

We will also need the following basic result.

Proposition 4.8. Let @ : M — N be a morphism of matroids M = (X,J) and N = (Y,J). Let S,T C X,
|S| = |T| be two distinct bases of ®. Then there exists z € S\T and w € T\ S such that S —z+w is also
a basis of ®.

Proof. Fix an arbitrary z € S\ T. We split the proof into two cases. First, suppose that ®(S — z) contains
a basis of N. Applying the exchange property of M to the independent sets S — z and T, there exists
w € T\ S such that §' := S —z+w is an independent set of M. Note that ®(S") D (S —z) contains a
basis of N by assumption, so S’ is a basis of @, as desired.

Second, suppose that ®(S —z) does not contain a basis of N. Applying the exchange property of N
to ®(S —z) and P(T), there exists w € T\ S such that &(S —z+w) contains a basis of N. Since ® is a
morphism of matroid, we have

FS—z4w) = f(S=2) 2 g(B(S—z+w)) — g(d(S—2)) = 1,

where f and g are rank functions in M and N, respectively. This implies that S —z+w is an independent
set of M, and therefore S —z+ w is a basis of the morphism ®. This completes the proof. O

S Combinatorial atlases and hyperbolic matrices

In this section we introduce combinatorial atlases and present the local-global principle which allows
one to recursively establish hyperbolicity of vertices. See §17.4 for some background.

5.1 Combinatorial atlas

Let P = (Q, <) be a locally finite poset of bounded height.® Denote by I = (Q,®) = Hp be the acyclic
digraph given by the Hasse diagram of P. Let QY C Q be the set of maximal elements in P, so these are
sink vertices in I'. Similarly, denote by QF := Q~ QO the non-sink vertices. We write v* for the set of
out-neighbor vertices v € Q, such that (v,') € ©.

Definition 5.1. A combinatorial atlas A = Ay of dimension d is an acyclic digraph I' := (Q,0) = Hyp
with an additional structure:

o Each vertex v € Q is associated with a pair (M,,h,), where M, is a nonnegative symmetric
d x d matrix, and h, € R is a nonnegative vector.

o Every vertex v € Q" has outdegree d, and the outgoing edges of each vertex v € Q" are labeled
with indices i € [d]. We denote the edge labeled i as e!) = (v,v{), where 1 <i <d.

o Each edge el is associated to a linear transformation T<vi> : R - RY

8In our examples, the poset P can be both finite and infinite.
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Whenever clear, we drop the subscript v to avoid cluttering. We call M= (M;}); je|q the associated

matrix of v, and h = (h,-)ie[d] the associated vector of v. In notation above, we have v € v*, for all
1 <i<d.

5.2 Local-global principle

As in the introduction (see §1.20), matrix M is called hyperbolic, if
(v,Mw)? > (v, Mv)(w,Mw) forevery v,wecRY suchthat (w,Mw)> 0. (Hyp)

For the atlas A, we say that v € Q is hyperbolic, if the associated matrix M, is hyperbolic, i.e. satisfies
(Hyp). We say that atlas A satisfies hyperbolic property if every v € Q is hyperbolic.

Note that property (Hyp) depends only on the support of M, i.e. it continues to hold after adding or
removing zero rows or columns. This simple observation will be used repeatedly through the paper.

We say that atlas A satisfies inheritance property if for every non-sink vertex v € Q*, we have:
(Mv); = <T<"> v, M<i>T<i>h> for every i€ supp(M) and ve€RY, (Inh)

where T = T,<f.> ,h=h, and MY := M, is the matrix associated with )

Similarly, we say that atlas A satisfies the pullback property if for every non-sink vertex v € Q*, we
have:

Y n <T<i> v, MO T v) > (v,Mv) for every v e R?. (Pull)
i€supp(M)

We say that a non-sink vertex v € Q" is regular if the following positivity conditions are satisfied:

The associated matrix M, restricted to its support is irreducible. (Irr)

The associated vector h,, restricted to the support of M,, is strictly positive. (h-Pos)

Note that a matrix is irreducible if if it is not similar via a permutation to a block upper triangular matrix
that has more than one block of positive size.

We now present the first main result of this section, which is a local-global principle for (Hyp).

Theorem 5.2 (local-global principle). Let A be a combinatorial atlas that satisfies properties (Inh) and
(Pull), and let v € QT be a non-sink regular vertex of T. Suppose every out-neighbor of v is hyperbolic.
Then v is also hyperbolic.

Theorem 5.2 reduces checking the property (Hyp) to sink vertices v € Q°. In our applications, the

pullback property (Pull) is more complicated condition to check than the inheritance property (Inh). In
the next Section 6, we present conditions implying (Pull) that are easier to check.
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5.3 Eigenvalue interpretation of hyperbolicity

The following lemma that gives an equivalent condition to (Hyp) that is often easier to check. A symmetric
matrix M satisfies (OPE) if

M has at most one positive eigenvalue (counting multiplicity). (OPE)

The equivalence between (Hyp) and (OPE) is well-known in the literature, see e.g., [Gre81], [COSWO04,
Thm 5.3], [SvH19, Lem. 2.9] and [BH20, Lem. 2.5]. We present a short proof for completeness.

Lemma 5.3. Let M be a self-adjoint operator on R? for an inner product (+,). Then M satisfies (Hyp)
if and only if M satisfies (OPE).

Proof. For the (Hyp) = (OPE) direction, suppose to the contrary that M has eigenvalues A;, 4, > 0 (not
necessarily distinct). Let v and w be orthonormal eigenvectors of M for A; and A, respectively. It then
follows that

0 = (vvMw) and (v.Mv)(w,Mw) = LA,

which contradicts (Hyp).

For the (OPE) = (Hyp) direction, let v,w € R? be such that (w,Mw) > 0. Let A be the largest
eigenvalue of M, and let h be a corresponding eigenvector. Since (w,Mw) > 0, this implies that 4 is a
positive eigenvalue. Since M has at most one positive eigenvalue (counting multiplicity), it follows that A
is the unique positive eigenvalue of M, and is a simple eigenvalue. In particular, this implies that

(w,Mh) # 0,
as otherwise, we would have (w,Mw) < 0. Let z € R be the vector

(v,Mh)
(w,Mh)

Z — V —

It follows that (z, Mh) = 0. Since A is the only positive eigenvalue of M, we then have
(z,Mz) < 0. (5.1)
On the other hand, we have
(v.Mh) (v,Mw) _ (v,Mh)? (w,Mw)
(w, M) (w, Mh)?
(v,Mw)?

SRRRCATTN

(z,Mz) = (v,Mv) — 2

where the last inequality is due to the AM—GM inequality. Combining this inequality with (5.1), we get
(v, Mw)? > (v,Mv) (w,Mw),

which proves (Hyp). O
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5.4 Proof of Theorem 5.2

Let M:=M, and h := h, be the associated matrix and the associated vector of v, respectively. Since
(Hyp) is a property that is invariant under restricting to the support of M, it follows from (Irr) that we can
assume that M is irreducible.

Let D:= (D;;) be the d x d diagonal matrix given by

Mh);
D; = (h) forevery 1 <i<d.
i
Note that D is well defined and D;; > 0, by (h-Pos) and the assumption that M is irreducible. Define a
new inner product (-,-)p on RY by (v,w)p := (v,Dw).

Let N:= D~ !'M. Note that (v,Nw)p = (v,Mw) for every v,w € R. Since M is a symmetric matrix,
this implies that N is a self-adjoint operator on RY for the inner product (-,-)p. A direct calculation
shows that h is an eigenvector of N for eigenvalue A = 1. Since M is irreducible matrix and h is a
strictly positive vector, it then follows from the Perron—Frobenius theorem that A = 1 is the largest real
eigenvalue of N, and that it has multiplicity one.

Claim: A =1 is the only positive eigenvalue of N (counting multiplicity).
By applying Lemma 5.3 to the matrix N and the inner product (-, -)p, it then follows that

(v,Nw)p, > (v,Nv)p (w,Nw)p forevery v,w € RY.

Since (v,Nw)p = (v,Mw), this implies (Hyp) for v, and completes the proof of the theorem. O

Proof of the Claim. Let i € [d] and v € RY. It follows from (Inh) that

2

(Mv)))? = (TOv, MO TOR)?, (5.2)

Since M) satisfies (Hyp) by the assumption of the theorem, applying (Hyp) to the RHS of (5.2) gives:

(Mv),)> > (Tv, MO Ty (T, M? TOh), (5.3)
Here (Hyp) can be applied since <T<i>h, M T<i>h> = (Mh); > 0. Now note that
25 _ 2 b \2 h;
((Nv);)"Dii = ((Mv);) (Mhy; (Mv),) (Th, MO TOR)

>(s3) hi (Tv, MO TV,

Summing this inequality over all i € [d], gives:
(Nv,Nv)p > Y b (TOv, M TOV) >puy (v,Mv) = (v,Nv)p. (5.4)
i=1

Now, let A be an arbitrary eigenvalue of N, and let g be an eigenvector of A. We have:

2*(g,g)p = (Ng,Ng)p >i4) (g,Ng)p = A (g,)p.

This implies that A > 1 or A < 0. Since A = 1 is the largest eigenvalue of N and is simple, we obtain the
result. O
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Remark 5.4. In the proof above, neither the Claim nor the proof of the Claim are new, but a minor
revision of Theorem 5.2 in [SVH19]. We include the proof for completeness and to help the reader get
through our somewhat cumbersome notation.

6 Pullback property

In this section we present sufficient conditions for (Pull) that are easier to verify, together with a
construction of the maps T,

6.1 Three new properties

Let A be a combinatorial atlas. We say that A satisfies the projective property, if for every non-sink vertex
v € QT and every i € supp(M), we have:

(i) — {Vj if j € supp(M®) Nsupp(M),

. Proj
J v if j € supp(M?)\ supp(M). (Proy)

We say that A satisfies the transposition-invariant property, if for every non-sink vertex v € Q*, we have:

MYIE = M,g> = Mg‘> for every distinct i, j, k € supp(M). (T-Inv)

Now, let v € QT be a non-sink vertex of I, and let i € supp(M). We partition the support of matrix
M associated with vertex v{), into two parts:

Aunt” := supp(M") N (supp(M) — i), Fam'” := supp(M) \ (supp(M) — i). 6.1)

In other words, Aunt” consists of elements in the support of M that do not include i,” while Fam

consists of i together with elements that initially are not in the support of M, but is then included in the
support of M 10 For every distinct i, j € supp(M), let

Kj =M, —n Y MY (6.2)
k€Fam!/

Let us emphasize that Aunt'”?, Fam® | and K;; all depend on non-sink vertex v of I', even though v does
not appear in these notation.

We say that A satisfies the K-nonnegative property, if for every non-sink vertex v € Q,
K;; > 0 forevery distinct #,j € supp(M). (K-Non)
The main result of this subsection is the following sufficient condition for (Pull).

Theorem 6.1. Let A be a combinatorial atlas that satisfies (Inh), (Proj), (T-Inv) and (K-Non). Then A
also satisfies (Pull).

9The name “aunt” here is referring to the siblings of the parent.
10The name “family” here is referring to both the parents and their children.
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6.2 Symmetry lemma

To prove Theorem 6.1, we need the following:

Lemma 6.2. Let A be a combinatorial atlas that satisfies (Inh), (Proj), and (T-Inv). Then, for every
non-sink vertex v € QF, we have:

Kij = Kj; foreverydistinct i,j € supp(M).

Proof. Let ey,...,e; be the standard basis for R?. 1t follows from (Inh) that:

d
M = (Me;), = (T%e;,M"T Z

= Y M{@aom),+ ¥ My ’>h

keFam{) ke Aunt®®

=M (T%h), + Y M@, + Y MY (1),
ke Fam® k€ supp(M)\{i,j}

Applying (Proj) to the equation above, we get:

Mi = Mjh + ¥ Mph - Y M (63)
keFam® kesupp(M)\{i,j}

By the same reasoning, we also get:

M =M + Y M+ Y MYy (6.4)
k€ Fam' ke supp(M)\{i,j}

By (T-Inv), the rightmost sums in (6.3) and (6.4) are equal. On the other hand, the left side of (6.3) and
(6.4) are equal since M is a symmetric matrix. Equating (6.3) and (6.4), we obtain:

(i — MY ()
Mih + Y MUh = Mh o+ Y MY,
k€Fam keFam

which is equivalent to

() (J) R0)
M} h; — Y M'h; =M'h — ) Mjk
k€ Fam'/ k€ Fam()

The lemma now follows by noting that the LHS of the equation above is equal to K;;, while the RHS is
equal to Kj;. O
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6.3 Proof of Theorem 6.1

Let v be a non-sink vertex of I, and let v € R?. The left side of (Pull) is equal to

Y b (TOyMOTOY) = Y Y b (1) (1), M
i€ supp(M) i€supp(M) j ke supp(M())

First, this sum can be partitioned into the sum over the following five families:

(6.5)

(1) The triples (i, j,k), where i € supp(M), and j,k € Aunt"” are distinct. By (Proj), the term in (6.5)

is equal to

hiVijM;i]z.

(2) The triples (i, j, k), where i € supp(M), and j,k € Fam'? (not necessarily distinct). By (Proj), the

term in (6.5) is equal to
hv M.

(3) The triples (i, j, k), where i € supp(M), j € Aunt”), and k € Fam®. By (Proj), the term in (6.5) is

equal to
h,‘ ViVj M;l]z .

(4) The triples (i, j, k), where i € supp(M), j € Fam®, and k € Aunt'?. By (Proj), the term in (6.5) is

equal to

h,' ViVi M;llz .

(5) The triples (i, j, k), where i € supp(M), and j =k € Aunt®?. By (Proj), the term in (6.5) is equal to

2@ hi o 20l
J keFam{

Thus the sum over this family can be partitioned further into the sum over the following two

families:

(5a) The pair (i, j), where i, j € supp(M) are distinct, with the term

F;VjKij‘

(5b) The triples (i, j, k), where i, j € supp(M) are distinct, and k € Fam'/), with the term

hviMY .
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Second, the right side of (Pull) is equal to

(v,Myv) = Z v (MV)y =(tnh) Z vy <T<i’)v’ M T(i/>h>
i' € supp(M) i' € supp(M)
-y Y v (), (1), M. (6.6)

i'€suppM) j/ k' € supp(M))
This sum can be partitioned into the sum over the following five families:

(1) The triples (i, j/,k'), where i’ € supp(M), and j/,k’ € Aunt'’) are distinct. By (Proj), the term in
(6.6) is equal to
hk/ \44 Vj/ Mil, >, .

(2") The triples (7', j',k"), where i’ € supp(M), and j', k' € Fam(") (not necessarily distinct). By (Proj),
the term in (6.6) is equal to

hi’ Vi2' Mil,/>, .

(3') The triples (i, ,k'), where i’ € supp(M), j/ € Aunt'"’, and ¥ € Fam). By (Proj), the term in
(6.6) is equal to

(i’
h,'/ A\ Vj/ Mj’k/ .

(4') The triples (i, j,k'), where i’ € supp(M), j/ € Fam‘"), and ¥ € Aunt"). By (Proj), the term in
(6.6) is equal to
(i)

2
hk/ Vl/ Mj

/.

(5') The triples (i, j/,k'), where i’ € supp(M), and j' = k' € Aunt’). By (Proj), the term in (6.6) is
equal to
hj/ \4% Vj/ Mﬁl,;, = Vy Vj/ Ki/j’ =+ Z hj/ \/ Vj/ ME’Jk) .
¥ €Fam'/"
Thus the sum over this family can be partitioned further into the sum over the following two
families:
(5a") The pair (¢, j'), where 7, j' € supp(M) are distinct, with the term

Vi’ Vj/ Kilj/ .
(5b') The triples (7, /,k'), where 7, j' € supp(M) are distinct, and k¥ € Fam/}, with the term

-/
hj/ Vir v Mg,jk) .

Third, we show that the RHS of (6.5) is at least as large as the RHS of (6.6). We have the following six
cases:
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(i) The term in (1) is equal to that of (1") by substituting i < j, j' < k, k' < i (counterclockwise
substitution) to (1):

()

h;v;vy M§Zk> =(T-Inv) DiV;jvi Mk{ i

= hk/ Vi v Mjik’ .

(ii) The term in (2) is equal to that of (2") by substituting i’ < i, j < j, kK’ < k (identity substitution)
to (2): . _

h; v? Mjl,z = hyvi M%, .

(iii) The term in (3) is equal to that of (3") by substituting i’ < i, j' + j, k' + k (identity substitution)
to (3):

(i

@)
h,‘V,'VjM = hi’Vi’Vj’Mj/k"

jk
(iv) The term in (4) is equal to that of (5b’) by substituting i < k, j’ < i, K’ < j (clockwise substitution)
to (4): ' .
h; v; V/(Mj.'k> = hjyvyvy M§’]1<’> .
(v) The term in (5a) is equal to that of (5a") by substituting i’ < i, j' <— j (identity substitution) to (5a):
h; h;
h*;VfKij + iV%Kji > 2vivj/KijKji =teme.2 VivjKij + v;viKji
= Vl'/ Vj/ Ki/j/ + le Vl'l Kjll'l y
where the first inequality follows from (K-Non) and the AM-GM inequality.!!
(vi) The term in (5b) is equal to that of (4') by substituting i’ <— j, j' < k, k' <— i (clockwise substitution)
to (5b): ' .
hivIMY = hyviMy) .
This completes the proof of the theorem. O

Remark 6.3. The condition (K-Non) in Theorem 6.1 can be weakened as follows. Let v € Q" be a
non-sink vertex, and let K:= (K;;); jesupp(vy be the matrix defined by
K;j asin (6.2) if i,j € supp(M), i# j,

h‘
- Z —K;y if i=j € supp(M).
tesupp(M)\{i}

We claim that the condition (K-Non) in Theorem 6.1 can be replaced with

K,‘j =

The matrix —K is positive semidefinite, (K-PSD)

for every non-sink vertex v of I'. This generalization follows from the same proof as Theorem 6.1 by
a straightforward modification to step (v). Note that in this paper we never apply this (slightly more
general) version of Theorem 6.1, as all interesting applications that we found satisfy the stronger condition
(K-Non), which is also easier to check.

"'Note that this is only instance of inequality in this proof.
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7 Hyperbolic equality for combinatorial atlases

In this section we characterize when the equality conditions in (Hyp) hold for all non-sink vertices in a
combinatorial atlas. For that, we obtain the equality variation of the local-global principle (Theorem 5.2).
See §17.4 for some background.

7.1 Statement

Let A be a combinatorial atlas of dimension d. Recall that, for a non-sink vertex v of I', we denote by
M =M, the associated matrix of v, by h =h, the associated vector of v, by T = T<v’> the associated
linear transformation of the edge e = (v, v{?), and by M the associated matrix of the vertex v\

A global pair f,g € RY is a pair of nonnegative vectors, such that
f+ g is a strictly positive vector. (Glob-Pos)

Here f and g are global in a sense that they are the same for all vertices v € Q.

Fix a number s > 0. We say that a vertex v € Q satisfies (s-Equ), if
(EMf) = s(g,Mf) = s’ (g, Mg), (s-Equ)

where M = M, as above. Observe that (s-Equ) implies that equality occurs in (Hyp) for substitutions
v < g and w < f, since

(g,Mf)> = s (g,Mg) s~ (f Mf) = (g, Mg) (f,Mf). (7.1)

We say that the atlas A satisfies s-equality property if (s-Equ) holds for every v € Q.

We now present the first main result of this section, which is a local-global principle for (s-Equ). A
vertex v € Q7 is called functional source if the following conditions are satisfied:

f; = (T<i>f)j and g; = (T<i>g)j for every i € supp(M), j € supp(M®),  (Glob-Proj)
f=nh,. (h-Glob)

Here condition (Glob-Proj) means that f,g are fixed points of the projection T/ when restricted to the
support.

We say that an edge ') = (v, v<i>) € O is functional if v is a functional source and i € supp(M) N
supp(h). A vertex w € Q is a functional target of v, if there exists a directed path v — w in I consisting
of only functional edges. Note that a functional target is not necessarily a functional source.

Theorem 7.1 (local-global equality principle). Let A be a combinatorial atlas that satisfies properties
(Inh), (Pull). Suppose also A satisfies property (Hyp) for every vertex v € Q. Let f,g be a global pair
of A. Suppose a non-sink vertex v € Q7 satisfies (s-Equ) with constant s > 0. Then every functional
target of v also satisfies (s-Equ) with the same constant s.
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7.2 Algebraic lemma

We start with the following general algebraic result. Recall that a matrix is hyperbolic if it satisfies (Hyp).
Lemma 7.2. Let M be a nonnegative symmetric hyperbolic r X r matrix. Let f,g € R" be nonnegative

vectors, let s > 0, and let 2 :=f —sg. Then (s-Equ) holds if and only if Mz = Q.

Proof. The < direction follows from the fact that
(EMf) — s(gMf) — (ZMf) — (Mzf), and s(gMf) — s> (g Mg) — s(gMz). (72)

Thus it suffices to prove the = direction. We will assume that M is nonzero when restricted to the
support of g+f, as otherwise every term in (s-Equ) is equal to 0 and the lemma follows immediately. Let
w := g+f, and the assumption implies that (w,Mw) > 0. By (Hyp), we then have that the matrix M is
negative semidefinite on (Mw)~. Now note that z € (Mw), since (z,Mw) = 0 by (7.2) and (s-Equ).
Also note that

(z,Mz) = (£, Mf) — 2s(g,Mf) + s*(g,Mg) =@Equ O. (7.3)

It then follows from these three observations that Mz = 0, as desired. O

7.3 Proof of Theorem 7.1

By induction, it suffices to show that, for every functional edge (v,v?) € v*, we have that v{?) satisfies
(s-Equ) with the same constant s > 0.

It follows from (Inh), that for every i € supp(M) we have:
(Mg), = (TgMOTh)  and  (Mh), = (TOh,MYTh).
It then follows from (Glob-Proj) and the fact that f =h = h, by (h-Glob) that
(Mg), = (gMf)  and  (Mf), = (M), (7.4)

Let z := f—sg. It then follows from (s-Equ) and (7.3) that (z,Mz) = 0. By Lemma 7.2, (s-Equ)
implies that Mz = 0, which is equivalent to sMg = Mf. Together with (7.4), this implies that

s(g,M7f) = s(Mg), = (Mf), = (EM7f). (1.5)
On the other hand, we have
; s+1
EMOf) =4y (MF), =¢5) — (M(f+g)), >0,

where the positivity follows by (Glob-Pos) and the assumption that i € supp(M). Now note that,

(zM2) = s> (g Mg — 25(g MV f) + (£, M7 1)
i (g, M )2 (7.6)
=@s) <<g7M<>g> T EMo )
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which is nonpositive as v} satisfies (Hyp). On the other hand, we have

Y h@EMz) =Goveoy Y, hi(TO2,MITV2) >y (2,Mz) =43 0.
i€supp(M) i€supp(M)

So the RHS of this inequality is equal to 0, while the LHS is a sum of nonpositive terms by (7.6). This
implies that every term in the first sum is equal to 0, and thus h;(z, M%) z) = 0 for every i € supp(M).
This in turn implies that (z, M z) = 0 whenever (v,v") is a functional edge. This is equivalent to
saying that the left side of (7.6) is zero, and we have:

(g, M )2 1

gy — W2 7/ z (i)

It then follows from (7.5) and (7.7) that v satisfies (s-Equ) whenever (v, v<i>) is a functional edge, which
completes the proof. 0

8 Log-concave inequalities for interval greedoids

In this section, we prove Theorem 1.31 by constructing a combinat