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Abstract: An n-vertex graph is Hamiltonian if it contains a cycle that covers all of its
vertices and it is pancyclic if it contains cycles of all lengths from 3 up to n. A celebrated
meta-conjecture of Bondy states that every non-trivial condition implying Hamiltonicity also
implies pancyclicity (up to possibly a few exceptional graphs). We show that every graph G
with κ(G)> (1+o(1))α(G) is pancyclic. This extends the famous Chvátal-Erdős condition
for Hamiltonicity and proves asymptotically a 30-year old conjecture of Jackson and Ordaz.

Key words and phrases: Hamiltonicity, pancyclicity, Chvatal-Erdos theorem

1 Introduction

The notion of Hamiltonicity is one of most central and extensively studied topics in Combinatorics.
Since the problem of determining whether a graph is Hamiltonian is NP-complete, a central theme in
Combinatorics is to derive sufficient conditions for this property. A classic example is Dirac’s theorem
[14] which dates back to 1952 and states that every n-vertex graph, for n > 2, with minimum degree at
least n/2 is Hamiltonian. Since then, a plethora of interesting and important results about various aspects
of Hamiltonicity have been obtained, see e.g. [1, 11, 12, 13, 19, 25, 26, 27, 33], and the surveys [21, 28].

Besides finding sufficient conditions for containing a Hamilton cycle, significant attention has been
given to conditions which force a graph to have cycles of other lengths. Indeed, the cycle spectrum of
a graph, which is the set of lengths of cycles contained in that graph, has been the focus of study of
numerous papers and in particular gained a lot of attention in recent years [2, 3, 15, 20, 24, 30, 31, 32, 36].
Among other graph parameters, the relation of the cycle spectrum to the minimum degree, number of
edges, independence number, chromatic number and expansion of the graph have been studied.
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We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers from 3 up to n.
In the cycle spectrum of an n-vertex graph, it is usually hardest to guarantee the existence of the longest
cycle, i.e. a Hamilton cycle. This intuition was captured in Bondy’s famous meta-conjecture [6] from
1973, which asserts that any non-trivial condition which implies Hamiltonicity, also implies pancyclicity
(up to a small class of exceptional graphs). As a first example, he proved in [7] an extension of Dirac’s
theorem, showing that minimum degree at least n/2 implies that the graph is either pancyclic or that it
is the complete bipartite graph K n

2 ,
n
2
. Further, Bauer and Schmeichel [5], relying on previous results of

Schmeichel and Hakimi [35], showed that the sufficient conditions for Hamiltonicity given by Bondy [8],
Chvátal [10] and Fan [18] all imply pancyclicity, up to a certain small family of exceptional graphs.

Another classic condition which implies Hamiltonicity is given by the famous theorem of Chvátal
and Erdős [11]. It states that if the vertex connectivity of a graph G is at least as large as its independence
number, that is, κ(G) ≥ α(G), then G is Hamiltonian. The pancyclicity counterpart of this result has
also been investigated - see, e.g., [4] and the surveys [22, 34]. In fact, in 1990, Jackson and Ordaz
[22] conjectured that G must be pancyclic if κ(G)> α(G), which if true would confirm Bondy’s meta-
conjecture for this classical instance. One can use an old result of Erdős [16] to show pancyclicity if κ(G)
is large enough function of α(G). Indeed, Erdős showed that if the number of vertices in G is larger than
4α4(G) (and thus, also if κ(G)> 4α4(G)), then it is pancyclic. A first linear bound on κ(G) was given
only in 2010 by Keevash and Sudakov [24], who showed that κ(G)≥ 600α(G) is enough. In this paper,
we resolve the conjecture of Jackson and Ordaz asymptotically, by showing that κ(G)> (1+o(1))α(G)
is already enough to guarantee pancyclicity.

Theorem 1.1. Let ε > 0 and let n be sufficiently large. Then, every n-vertex graph G for which we have
κ(G)≥ (1+ ε)α(G) is pancylic.

We remark that the only assumption of the above theorem is that n is sufficiently large in terms of ε . In
turn, the first step of the proof will be to use the old result of Erdős mentioned before that if n ≥ 4(α +1)4,
then G is pancyclic, and therefore, we can assume that n < 4(α + 1)4, which implies that α is also
sufficiently large in terms of ε .

Next we briefly discuss some of the key steps in the proof of this theorem. It will be convenient for us
to consider different ranges of cycle lengths whose existence we want to show, and for each range we
have a separate subsection which deals with it. This is done in Section 3. In order to find these different
cycle lengths we will combine various tools on shortening/augmenting paths and finding consecutive path
lengths between two fixed vertices.

For example, for finding consecutive path lengths we crucially use that since κ(G)> α(G), it must
be that G contains triangles - moreover, it contains a path with triangles attached to many of its edges
(see Definition 2.3), which trivially implies the existence of many consecutive path lengths between the
endpoints of such a path. For shortening/augmenting paths, we also introduce new tools. One of them
is used to shorten paths using only the minimum degree of the graph (Lemma 2.8), while another one
augments paths using both the independence and connectivity number (Lemma 2.10). Furthermore, we
will also use a novel result proven in [15] using the Gallai-Milgram theorem, in order to shorten paths
using the independence number of the graph (Lemma 2.9). In Section 2 we present these tools, together
with some other useful results of a similar flavour. After that, in Section 3, we prove Theorem 1.1. The
general proof strategy is to find a cycle of appropriate length which consists of two paths, one of which
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has many edges to which triangles are attached. Then we apply our shortening/augmenting results to the
other path. Combining the consecutive path lengths from the first path with the path lengths obtained
from the second path (see Observation 2.2), we will get all possible cycle lengths. Finally, in Section 4
we make some concluding remarks.

2 Preliminaries

2.1 Notation and definitions

We mostly use standard graph theoretic notation. Let G be a finite graph. Denote by V (G) its vertex set,
and let S1,S2 ⊆ V (G). We denote by G[S1] the subgraph of G induced by S1, and by E[S1,S2] the set
of edges with one endpoint in S1 and the other in S2. Let H be a subgraph of G. We denote by G[H]
the graph G[V (H)]. A path P = (x0,x1, . . . ,xl) of length l is a graph on vertex set {x0,x1, . . . ,xl} with an
edge between xi−1 and xi for all i ∈ [l]. We say that x0 and xl are the endpoints of P, and we call P an
x0xl-path. Given disjoint sets of vertices A,B, we say that P is a path going from A to B if x0 ∈ A,xl ∈ B
and xi /∈ A∪B for all 0 < i < l. We denote by α(G) the independence number of G. The connectivity
κ(G) of a connected graph G is the minimum number of vertices whose removal makes G disconnected
or reduces it to a trivial graph (i.e., consisting of a single vertex).

Given sets A1,A2 ⊂ N, we denote by A1 +A2 the set of integers c such that c = a1 + a2 for some
a1 ∈ A1 and a2 ∈ A2. Throughout the paper we omit floor and ceiling signs for clarity of presentation,
whenever it does not impact the argument.

Definition 2.1. Let a,b, p be positive real numbers. Given a graph G, and two vertices x and y, we say
that the pair xy is p-dense in the interval [a,b] if for every subinterval [a′,b′] with b′−a′ ≥ p such that
there is an integer in [a′,b′], we can find an integer l ∈ [a′,b′] and an xy-path in G of length l. Note that,
in particular, xy is 0-dense in [a,b] if there are paths of all lengths in [a,b] between x and y.

We now give a trivial observation which will be used in the proof of Theorem 1.1. It states that appropriate
combinations of internally vertex-disjoint paths of different lengths imply the existence of cycles of many
different lengths.

Observation 2.2. Let G be a graph whose vertex set contains t disjoint sets S1, . . . ,St and another set of
t vertices v1, . . . ,vt outside of

⋃t
i=1 Si. For each i ∈ [t], let Ai ⊂N and suppose that for every i the induced

subgraph G[vi ∪Si ∪vi+1] is such that it contains a vivi+1-path of length l for each l ∈ Ai (with vt+1 = v1).
Then for every l ∈ A1 + . . .+At , the graph G contains a cycle of length l.

2.2 Cycles and paths with triangles

One of the crucial objects which are used in our proof will be cycles which have triangles attached to
some of their edges. Evidently, one can increase the length of such a cycle by precisely one, by using the
two edges of a triangle, instead of the edge which lies on the cycle.

Definition 2.3. Define the graph Cr
l to be the graph formed by a cycle v1v2 . . .vlv1 of length l with the

additional edges v1v3,v3v5, . . . ,v2r−1v2r+1 (if r = 0, then it is just a cycle of length l). We will refer to
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this as a cycle of length l with r triangles. Similarly define Pr
l and refer to it as a path of length l with r

triangles, where P0
0 is just a vertex.

The following is an easy starting point for the existence of the graphs Cr
l with appropriate parameters, as

subgraphs in graphs G with κ(G)≥ α(G).

Lemma 2.4. Every n-vertex graph G with κ(G) ≥ α(G) contains a Cr
l for all r such that 0 ≤ r ≤

⌊κ(G)−α(G)
2 ⌋ and some l with l −2(r+1)≤ max

(
n

κ(G)−2r+1 ,
n

κ(G)−1

)
. In particular, it contains a Pr

2r for
all such r.

Proof. We will first show that G must always contain a Pr′
2r′ for r′ :=

⌊
κ(G)−α(G)

2

⌋
, which can assume to

have r′ ≥ 1, since otherwise, P0
0 is a single vertex and clearly exists. We construct such a path greedily.

Suppose that we have the vertices v1v2v3 . . .v2i+1 which form a Pi
2i, so that the edges v1v3, . . . ,v2i−1v2i+1

are also present. Provided that i< r′, we can augment this path as follows. Consider the set S :=N(v2i+1)\
{v1, . . . ,v2i}. By assumption, this has size at least δ (G)−2i > κ(G)−2r′ ≥ α(G). Therefore, it must
contain an edge v2i+2v2i+3. Clearly, v2i+1v2i+2v2i+3 forms a triangle and thus, v1v2v3 . . .v2i+1v2i+2v2i+3 is
a Pi+1

2i+2. Continuing with this procedure until i = r′, gives the desired Pr′
2r′ .

Now, fix r with the given condition. If r = 0, then take an edge xy in G. By Menger’s theorem, there
exist at least κ(G) internally vertex-disjoint xy-paths in G and thus, at least κ(G)−1 of these are not the
edge xy. Therefore, there is such a path with at most n

κ(G)−1 +2 vertices, which together with the edge xy,
then creates a cycle of length at most n

κ(G)−1 +2. If r ≥ 1, by the previous paragraph, G contains a Pr
2r -

let x,y be its endpoints. By Menger’s theorem, there exist at least κ(G) internally vertex-disjoint xy-paths
in G. Since at most 2r−1 of these intersect Pr

2r \{x,y}, there exists one which is disjoint to Pr
2r \{x,y}

and contains at most n
κ(G)−2r+1 internal vertices. This produces the desired Cr

l .

We can also use this type of cycle to extend the celebrated Chvátal-Erdős theorem [11].

Theorem 2.5 (Chvátal-Erdős [11]). If for a graph G we have that κ(G)≥ α(G), then G is Hamiltonian.

Our result states that if the Chvátal-Erdős condition is satisfied, then we can find a Hamilton cycle with a
certain number of triangles, depending on the discrepancy between the connectivity and the independence
number.

Theorem 2.6. Every n-vertex graph G such that κ(G)≥ α(G) contains a Cr
n with r =

⌊
κ(G)−α(G)

2

⌋
.

Proof. Suppose for contradiction that some l < n is maximal such that there exists a copy of Cr
l in G. Note

that l exists by Lemma 2.4. Order the cycle as v1v2 . . .vlv1 so that the edges v1v3,v3v5, . . . ,v2r−1v2r+1 are
also present. Since l < n, there is a vertex v not in Cr

l . Moreover, as κ(G)≥ α(G)+2r, there exist α(G)
paths contained in V (G)\{v1, . . . ,v2r}, all of which go from v to Cr

l and are vertex-disjoint apart from the
initial vertex v. Let us denote these paths as Pi1 ,Pi2 , . . . so that v j = Pj ∩Cr

l for j ∈ {i1, i2, . . .}. Consider
the set S := {vi1+1,vi2+1, . . .} with indices taken modulo l, so that |S| ≥ α(G). Observe (as illustrated in
Figure 1) that then there must be an edge contained in S∪{v} and that any such edge can be used to
augment Cr

l to a Cr
l′ with l′ > l, contradicting the maximality of l.

We finish this section with the following partitioning lemma - it will allow us to transform even cycles
found by standard density considerations into odd cycles.
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.v1

.v2r+1

..

..

..

..
.
.
.
. .v

.

.

.

.vik+1

vik

vil

vil+1

Figure 1: An illustration of how an edge between two elements vik+1,vil+1 of S can be used to construct a
new Cr

l′ .

Lemma 2.7. Let G be an n-vertex graph with κ(G)> α(G). Then, there exists X ⊆V (G) and a set of
edges E contained in G[X ] such that the following hold.

• |E| ≥
(

κ(G)−α(G)
16

)
n.

• For every edge e = xy ∈ E there is a vertex z ∈V (G)\X such that xzy is a triangle in G.

Proof. First, since every vertex set in G of size at least α(G)+ 1 contains an edge, every vertex v in
G is such that its neighbourhood N(v) contains a matching of size at least δ (G)−α(G)

2 ≥ κ(G)−α(G)
2 . Let

r := κ(G)−α(G)
2 . For each v, fix such a matching Mv.

Now, let X be a random subset of V (G) where each vertex is chosen independently at random with
probability 1/2. Let E denote the set of edges e = xy with the following property: x,y ∈ X and there is
some z /∈ X such that yz ∈ Mx or xz ∈ My. Clearly, E satisfies the second condition of the lemma. We
need only to estimate the expected value of |E| in order to prove than the first condition is satisfied for
some X . Indeed, note that for an edge e = xy to be present in E we must have that there is some z such
that yz ∈ Mx or xz ∈ My. Further, if at least one of these options holds, it is clear that then P(e ∈ E)≥ 1

8 ;
since that is the probability that x,y ∈ X and z /∈ X . To finish, note that the number of such edges is at
least 1

2 ∑v 2|Mv|= ∑v |Mv| ≥ nr. Indeed, for each vertex x ∈ G, every vertex y in the matching Mx, gives
such an edge xy, but since we possibly double counted (x might be in the matching My), the total number
of such edges is at least 1

2 ∑v 2|Mv|. Hence, E[|E|]≥ nr/8, so there must exist such an E with |E| ≥ nr/8
as desired.

2.3 Path shortening/augmenting tools

In this section, we describe some tools for shortening paths. First, we show the following lemma which
uses only the minimum degree of the graph.

Lemma 2.8. Let G be an n-vertex graph, δ := δ (G) and let P be a path in G with endpoints x,y such
that |P|> 20n/δ . Then there is an xy-path P′ such that |P|−20n/δ ≤ |P′|< |P|.
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Proof. Suppose for sake of contradiction that no such path P′ exists. Let P := v1v2 . . .vl−1vl with
v1 = x,vl = y and let <P denotes the given ordering of the path P as v1 <P v2 <P . . . <P vl . Since
|P|> 10n/δ , we can partition P into sub-paths Q1,Q2, . . . ,Qk such that |Qk| ≤ 10n/δ and |Qi|= 10n/δ

for all i < k. Moreover, we have k =
⌈

|P|
10n/δ

⌉
. Now, take a subset Q′

1 ⊆ Q1 of size ⌊|Q1|/3⌋ ≥ 3n/δ such
that no two vertices in Q′

1 are at distance at most 2 in P. Consider then the set of edges incident to Q′
1,

that is, E[Q′
1,V (G)]; by the minimum degree condition, there are at least |Q′

1| ·δ ≥ 3n such edges.
Now, clearly there cannot exist an edge spanned by Q1 other than edges of P since this edge could

be used to shorten P by at most |Q1| ≤ 10n/δ . Hence, e(Q′
1,Q1)≤ 2|Q′

1|. Similarly, the following must
hold.

Claim. e(Q′
1,V (G)\P)≤ n−|P|.

Proof. Suppose otherwise. Then there is a vertex v ∈V (G)\P with at least 2 neighbours in Q′
1 - denote

these by u,w. Note that since by construction u,w are at distance at least 2 and at most |Q1| ≤ 10n/δ in
P, this is a contradiction, since it produces the desired P′ by substituting the sub-path of P between u and
w by the path uvw.

To give an upper bound on the total number of edges incident to Q′
1 which are contained in V (P), we also

use the following claim.

Claim. For all i > 1, we have e(Q′
1,Qi)< |Q′

1|+ |Qi|.

Proof. Suppose otherwise. This implies that there is a cycle in G[Q′
1,Qi] and hence, there must exist two

crossing edges in this bipartite graph, that is, edges a1b1 and a2b2, with a1 <P a2 and both in Q′
1, and

b1 <P b2 both in Qi. These can clearly be used to shorten P (see Figure 2) by at most |Q1|+ |Qi| ≤ 20n/δ ,
which is a contradiction as it produces the desired P′.

y..x
a1 a2 b2b1

. . ..
Figure 2: Shortening of the path P using the crossing edges a1b1 and a2b2. The resulting path is P′ and is
drawn in red.

The above claim implies that

∑
i>1

e(Q′
1,Qi)< ∑

i>1

(
|Q′

1|+ |Qi|
)
≤ (k−1)|Q′

1|+(|P|− |Q1|)< 2|P|−2|Q′
1|.

To conclude, we now must have the following

e(Q′
1,V (G)) = e(Q′

1,Q1)+ e(Q′
1,V (G)\P)+∑

i>1
e(Q′

1,Qi)< 2|Q′
1|+(n−|P|)+(2|P|−2|Q′

1|)< 2n.

which contradicts the previous observation that e(Q′
1,V (G))≥ 3n.
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Conversely, the following lemma gives a way to shorten a path using only its independence number.
It was proven in [15] and was used to solve an old conjecture of Erdős [16] - see Proposition 2.9 in [15]
and let U = /0 and c = ⌈20α2/|P|⌉+3

4 .

Lemma 2.9. Let G be an n-vertex graph with independence number α , let P be a path in G with endpoints
x,y such that |P|> 4α . Then there is an xy-path P′ such that |P|−⌈20α2/|P|⌉ ≤ |P′|< |P|.

We finish this section with a lemma which contrarily to the previous lemmas, will allow us to slightly
augment a path between two vertices. Furthermore, it will use both the connectivity and the independence
number of the graph, and it will be used when the size of the path P we are considering is not suitable to
apply the first two lemmas of this subsection.

Lemma 2.10. Let G be an n-vertex graph with connectivity κ and independence number α , and let r ∈N
be such that 2r < κ −α . Let P be a path in G with endpoints x,y and with |P| < n. Then, there is an
xy-path P′ such that |P|< |P′| ≤ |P|+ r provided that |P|> 80α

r , and α > r > 80α

r ·max
(

1, |P|
κ−α

)
.

Proof. Consider a vertex u not contained in P and write P as v1v2 . . .vl with x = v1,y = vl . By Menger’s
theorem, there exist min(κ, |P|) paths going from u to V (P) which are vertex-disjoint apart from the
vertex u. Let S ⊆V (P) be the endpoints of these paths, and for each vi ∈ S let Pi denote the corresponding
path from u to vi.

We first consider the case when S =V (P). Note that for all i, since vi,vi+1 are consecutive in P, we
can substitute the edge vivi+1 by the paths Pi,Pi+1 to form an xy-path of length |P|+ |Pi|+ |Pi+1| − 1.
Hence, if |Pi|+ |Pi+1|< r for some i, then we have constructed the desired P′. Otherwise, at least half of
the paths Pi with i ≤ 20α

r have |Pi| ≥ r/2. Moreover, we can assume that the Pi are induced paths since if
not, their length can be shortened. Let S′ be the set of vertices vi which are the endpoints of those paths,
and note that |S′| ≥ 10α

r . For each such Pi, let Qi denote the subpath of Pi formed by its r/4 vertices in
positions r/4+ 1, . . . ,r/2, viewed in the direction vi → u. Since Qi is an induced path, it contains an
independent set Ii of size |Qi|/2 ≥ r/8. Then we have∣∣∣∣∣ ⋃

vi∈S′
Ii

∣∣∣∣∣≥ |S′| r
8
> α,

hence there is an edge (ua,ub) between Ia and Ib for some va,vb ∈ S′. This now completes the proof, as we
can replace the part of the path in P between va and vb by the path obtained by concatenating the vaua-path
in Pa, the edge uaub and the ubvb-path in Pb, thus obtaining a path of length at least |P|+2 ·r/4− 20α

r > |P|
and at most |P|+2 · r

2 which completes this case.
Let us now consider the case when |S|= κ . First we show the following simple claim.

Claim. If at least α +1 paths Pi are such that |Pi|< r/2, then such a P′ exists.

Proof. For each one of the endpoints vi ∈ V (P)−{y} of the paths Pi, let v′i denote its neighbour on P
which is closer to y. Let X be the set of those at least α vertices, together with the vertex u. Then there is
an edge between two vertices in X . This gives an xy-path which is strictly longer than P, but by at most r
(see Fig. 3 for an illustration of this operation).
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.y

.
x

.u

..

..

v′i
vi

v′j
v j

Pi

Pj

.y

.
x

.u

..v′i
vi

Pi

Figure 3: The first figure is for the case that the edge is in X \{u} (an edge v′iv
′
j) and the second figure is

for when the edge contains u (an edge v′iu).

By the above claim, we can assume that at least κ −α vertices vi j ∈ S are such that |Pi j | ≥ r/2 - and
moreover, we can assume that they are induced paths (since otherwise they can be shortened). Let S′ be the
set of those vertices in S, so that |S′| ≥ κ −α . Now, by letting t = 20α|P|

r(κ−α) we conclude by averaging that P

contains an interval Q of length t with at least t
2|P|(κ −α) = 10α

r vertices in S′. By repeating the argument

above – finding the independent sets Ii ⊂ Pi for each of the 10α

r paths Pi which end in Q, and then finding
an edge between a pair Ii and I j – we get a path P′ of length at least |P|− |Q|+2 · r

4 ≥ |P|− t + r
2 > |P|

by our assumption on r, and length at most |P|+2 · r
2 , which completes the last case of the proof.

3 Proof of Theorem 1.1

Let ε > 0 and for convenience we may assume that ε is sufficiently small so that all our calculations go
through. Suppose that n is sufficiently large in terms of ε and that κ ≥ (1+ ε)α . Let G be a graph on n
vertices, let α denote its independence number and κ its connectivity number. This immediately implies
that α is also sufficiently large in terms of ε since otherwise, we would have n ≥ 4(α +1)4 which by an
old result of Erdős [16] would already imply pancyclicity.

Upper range: min
(

105n
ε2κ

, 100α

ε

)
to n

We will first construct cycles of all lengths from m := min
(

105n
ε2κ

, 100α

ε

)
to n. First, apply Theorem 2.6

to G, which implies that it contains a Cr1
n with r1 = εα/2. Note that if m = 105n

ε2κ
, then we also have

r1 ≥ 100n
κ

=: r2, since in that case 105n
ε2κ

≤ 100α

ε
. Hence, in that case G trivially contains Cr2

l .
Now, let us denote the Hamilton cycle in Cr

n by v1v2 . . .vnv1, with the edges v1v3,v3v5, . . . ,v2r−1v2r+1

present, where r = r1 if m = 100α

ε
, and r = r2 if m = 105n

ε2κ
. Let Q denote the path v1v2 . . .v2r+1, and let

P denote the path v2r+1v2r+2 . . .vnv1. Note that in the subgraph G[Q], the pair v1v2r+1 is 0-dense in the

JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):1–14, 2024 8

https://jamathr.org
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interval [r,2r]. We will now show that the same pair is r/2-dense in the interval [m−2r,n] in the graph
G[P]. Observation 2.2 then implies that G contains cycles of all lengths from m to n.

In order to show that v1v2r+1 is r/2-dense in the interval [m− 2r,n] in the graph G[P], a simple
application of either Lemma 2.8 or Lemma 2.9 suffices, depending on where the minimum m is attained.
Indeed, let G′ := G[P] and note that it has minimum degree at least δ ′ ≥ δ (G)−(2r−1)≥ κ −εα > (1−
ε)κ and α(G′)≤α . Assume first that m= 105n

ε2κ
≤ 100α

ε
, which implies that 20n/δ ′ ≤ 20n/(1−ε)κ < r/2.

Therefore, we can apply Lemma 2.8 to find a v2r+1v1-path P′ in G′ such that |P|− r/2 ≤ |P|−20n/δ ′ ≤
|P′|< |P|. Further, we can repeat this on P′ and continue applying Lemma 2.8 in such a manner, until we
are left with a path on at most 105n

ε2κ
−2r vertices. Note that we can do this, since for every application

of the lemma, we will have that the path will be of size at least 105n
ε2κ

−2r ≥ 105n
ε2κ

− 200n
κ

≥ 20n/δ ′. This

implies that v1v2r+1 is r/2-dense in the interval
[

105n
ε2κ

−2r,n
]

as desired.

Assume now that 105n
ε2κ

≥ 100α

ε
. Then, we can apply Lemma 2.9 to find a v2r+1v1-path P′ in G′ such

that |P|− r/2 ≤ |P|−⌈20α2/|P|⌉ ≤ |P′|< |P|. We can repeat this on P′ and iteratively apply the same
lemma in such a way, until we are left with a path P0 with at most 100α

ε
−2r = 100α

ε
− εα > 99α

ε
vertices,

so that for all previous paths P in this iteration we have ⌈20α2/|P|⌉< r/2. This shows that v1v2r+1 is
r/2-dense in the interval

[100α

ε
−2r,n

]
as desired.

Middle range: max(εα/4000,n/α) to min
(

105n
ε2κ

, 100α

ε

)
We will now consider the middle range of cycle lengths. First, observe that we may assume that
max(εα/4000,n/α)< min

(
105n
ε2κ

, 100α

ε

)
, as otherwise this range is empty. Hence we have that n/α <

100α/ε , which is equivalent to α > 1
10
√

εn. Further, we have εα/4000 < 105n
ε2κ

, and since we have κ > α ,
this gives α < 105

√
n/ε3. Observe that this implies that α = Θε(

√
n).

Now, first observe that by Lemma 2.4, G contains a C2r
l with r = ε10α = Θε(

√
n) and with l such that

4r+1 ≤ l ≤ n
κ(G)−4r+1

+4r+2 ≤ n
(1+ ε/2)α

+10ε
10

α ≤ n
α
,

where we used that 105
√

n/ε3 > α > 1
10
√

εn.
Note that this cycle C2r

l can also be viewed as a Cr
l by omitting some triangles, which we do so that

we have at least l −2r ≥ r vertices not among the triangles. Let P then be the path consisting of the first
2r+1 vertices of this Cr

l (recall that P forms a Pr
2r), and let P′ be the other path inside of the cycle with

the same endpoints, denoted by x,y - so that |P′|= l −2r ≥ r.
We will iteratively apply Lemma 2.10 to the path P′ inside of the graph G′ = G− (V (P)−{x,y}),

with parameter r defined as above, and connectivity κ ′ ≥ κ −|V (P)−{x,y}| ≥ κ − 2r. Indeed, note
that P′ satisfies the conditions of Lemma 2.10. Indeed, since n is sufficiently large in terms of ε , we
have |P′| ≥ r > 80α

r , while α > r > 80α

r · |P′|
κ ′−α

(since |P′| ≤ l ≤ n/α) and κ ′ > α +2r. Thus, there is an
xy-path P′′ in G′ with |P′|< |P′′| ≤ |P′|+ r.

We can continue applying Lemma 2.10 to the newly obtained path (now P′′) inside of the same graph
G′, each time getting a path which is longer by at most r than the previous one. Note that the conditions
of the lemma are still satisfied as long as the current path is of length at most 100α

ε
(again, since n is
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sufficiently large in terms of ε). This implies that the pair xy is r-dense in [l−2r,100α/ε] in the graph G′.
Now, since xy is also 0-dense in [r,2r] in G[P], this gives all cycle lengths in [l,100α/ε]⊇ [n/α,100α/ε]
by Observation 2.2, as desired.

Lower range: 3 to max(εα/4000,n/α)

To finish the proof of Theorem 1.1, we now deal with the lower range. Let us first show that G contains
the three smallest cycles.

Claim. G contains a C3, a C4 and a C5.

Proof. Note that G contains C3 since δ (G)≥ κ ≥ α +1, so the neighbourhood of a vertex necessarily
spans an edge. Suppose now for sake of contradiction that G does not contain a C4. Then, it must be
that for every vertex v, the graph induced by its neighbourhood G[N(v)] has maximum degree 1 - indeed,
otherwise it contains a path on three vertices, which together with v forms a C4. Moreover, this implies
that N(v) contains an independent set Iv of size at least |N(v)|/2 ≥ κ/2 ≥ (1+ ε)α/2. Now, take two
adjacent vertices u,v in G. Since G contains no C4, it must be that |Iu ∩ Iv| ≤ 1 and thus, (Iu∆Iv)\{u,v}
has at least (1+ ε)α − 3 > α vertices. To finish, note that there can be no edge between Iu \ {v} and
Iv \{u} since together with uv it would form a C4. Hence, the set (Iu∆Iv)\{u,v} is an independent set of
size larger than α , which contradicts the assumption on G.

Finally, suppose for sake of contradiction that G contains no C5. Much like before, note that it
must be that for every vertex v, G[N(v)] has no path on four vertices since this together with v forms
a C5. Therefore, N(v) contains an independent set Iv of size at least |N(v)|/3 ≥ κ/3 ≥ (1+ ε)α/3.
Now, take a vertex v, and let x1y1,x2y2,x3y3 be disjoint edges contained in N(v) - note these exist since
|N(v)| ≥ κ ≥ α +7. Consider also the neighbourhoods N(x1),N(x2),N(x3) and note that they must be
disjoint (except for v) – indeed, if e.g., z ∈ N(x1)∩N(x2) then vy1x1zx2v is a C5 (see Figure 4 for an
illustration). Note also that there cannot exist an edge zz′ with z ∈ N(xi),z′ ∈ N(x j) for some i ̸= j -
indeed, then vxizz′x jv is a C5. Concluding, note that it must be that Ix1 ∪ Ix2 ∪ Ix3 is an independent set and
has size at least |Ix1 |+ |Ix2 |+ |Ix3 |> α , which is a contradiction.

.v

.

.

.

.

.

.x1

x2

x3

y1

y2

y3

.z

Figure 4: An illustration of the cycle vy1x1zx2v.

For the remaining cycle lengths, it is necessary to consider two cases, depending on whether n/α is larger
than εα/4000 or not.
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Case 1: n/α ≥ εα/4000

This implies that n ≥ εα2/4000. Showing that G contains all cycles of lengths between 6 and n/α boils
down to the study of cycle-complete Ramsey numbers. Namely, the cycle-complete Ramsey number
r(Cl,Ks) is the smallest number N such that every graph on N vertices either contains a copy of Cl or an
independent set of size s. The following result of Erdős, Faudree, Rousseau and Schelp [17], along with a
more recent result by Keevash, Long and Skokan [23] cover the mentioned range of cycle lengths we
need.

Theorem 3.1 ([17]). Let l ≥ 3 and s ≥ 2. Then r(Cl,Ks) ≤
(
(l −2)(s1/x +2)+1

)
(s− 1), where x =

⌊ l−1
2 ⌋.

The next result by Keevash, Long and Skokan gives the precise behaviour of cycle-complete Ramsey
numbers in a wide range of parameters, and proves a conjecture from [17].

Theorem 3.2 ([23]). There exists C ≥ 1 so that r(Cl,Ks) = (l −1)(s−1)+1 for s ≥ 3 and l ≥C logs
log logs .

Note that since G contains no independent set of size larger than α and n ≥ εα2/4000, and by assumption
α is sufficiently large in terms of ε , Theorem 3.1 implies the existence of a cycle of length l for every
l ∈ [6, logα], while Theorem 3.2 covers the range of [logα,n/α].

Case 2: n/α < εα/4000

This implies that α > 40
√

n/ε . We need to find all cycles from 6 to εα/4000. For this, we use the
following classic result by Bondy and Simonovits.

Theorem 3.3 ([9]). Let G be an n-vertex graph with e(G)≥ max(20ln1+1/l,200nl). Then, G contains a
cycle of length 2l.

We can now use this together with Lemma 2.7 to get the desired cycle. Indeed, apply this lemma to
G to obtain a set X and edge-set E of edges contained in X , such that |E| ≥ κ−α

16 ·n ≥ εαn/8, and for
every edge xy ∈ E there exists z ∈V (G)−X such that x,y and z form a triangle. Let G′ := (X ,E) be the
graph consisting of these edges. Observe that it is sufficient for us to show that for all 3 ≤ l ≤ εα/4000,
there is a cycle of length 2l in G′ - indeed, such a cycle can then be transformed into a cycle of length
2l + 1 in G by substituting an edge xy of the cycle by the path xzy which is guaranteed to exist by
Lemma 2.7. Finally, we find these even cycles in G′ by applying Theorem 3.3, which gives cycles of
lengths 2l, for any l such that max(200nl,20ln1+1/l)≤ εαn/16. Since α > 40

√
n/ε and n is sufficiently

large in terms of ε , this holds for all l ∈ [3,εα/4000]. Indeed, for the first inequality note that for
each such l we have 200nl ≤ εαn/20. For the second one, note that if l < log2 n then the inequality
20ln1+1/l ≤ 20ln4/3 ≤ εαn/16 trivially holds since α > 40

√
n/ε and n is sufficiently large in terms of

ε ; on the other hand if l > log2 n, then 20ln1+1/l < 40l which is clearly less than αn/16 for l < εα/4000.

4 Concluding remarks

In this paper we showed that if a graph G satisfies κ(G)≥ (1+o(1))α(G) then G is pancyclic. Moreover,
the o(1) error term can be made to be α(G)−c for some small constant c > 0. This extends the classic
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theorem of Chvátal and Erdős, which states that κ(G)≥ α(G) implies that G is Hamiltonian, confirming
asymptotically Bondy’s meta-conjecture for this celebrated result. Nevertheless, it would be very
interesting to prove the Jackson-Ordaz conjecture in full generality, or at least to show that it holds when
κ(G)≥ α(G)+C for some constant C > 0.

Note added. Eight months after we posted our paper, Shoham Letzer [29] proved the conjecture of
Jackson and Ordaz for large graphs.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. First occurrence of Hamilton cycles in random
graphs. In Cycles in graphs (Burnaby, B.C., 1982), Vol. 115, North-Holland Mathematical
Studies, North-Holland, Amsterdam, 115:173–178, 1985. 1

[2] N. Alon and M. Krivelevich. Divisible subdivisions. Journal of Graph Theory, 98(4):623–
629, 2021. 1

[3] Y. Alon, M. Krivelevich, and E. Lubetzky. Cycle lengths in sparse random graphs. Random
Structures & Algorithms, 61(3):444–461, 2022. 1

[4] D. Amar, I. Fournier, and A. Germa. Pancyclism in Chvátal-Erdős graphs. Graphs and
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